نتایج جستجو برای: الگوی gmm

تعداد نتایج: 49663  

2008
Yongwook Bryce Kim Polina Golland Terry P. Orlando

Data-driven analysis methods, such as independent component analysis (ICA) and clustering, have found a fruitful application in the analysis of functional magnetic resonance imaging (fMRI) data for identifying functionally connected brain networks. Unlike the traditional regression-based hypothesis-driven analysis methods, the principal advantage of data-driven methods is their applicability to...

2005
Ximing Wu Jeffrey M. Perloff

We develop a generalized method of moments (GMM) estimator for the distribution of a variable where summary statistics are available only for intervals of the random variable. Without individual data, one cannot calculate the weighting matrix for the GMM estimator. Instead, we propose a simulated weighting matrix based on a first-step consistent estimate. When the functional form of the underly...

Journal: :CoRR 2015
Mathieu Fauvel Clement Dechesne Anthony Zullo Frédéric Ferraty

A fast forward feature selection algorithm is presented in this paper. It is based on a Gaussian mixture model (GMM) classifier. GMM are used for classifying hyperspectral images. The algorithm selects iteratively spectral features that maximizes an estimation of the classification rate. The estimation is done using the k-fold cross validation. In order to perform fast in terms of computing tim...

2003
Yining Chen Min Chu Eric Chang Jia Liu Runsheng Liu

In most state-of-the-art voice conversion systems, speech quality of converted utterances is still unsatisfactory. In this paper, STRAIGHT analysis-synthesis framework is used to improve the quality. A smoothed GMM and MAP adaptation is proposed for spectrum conversion to avoid the overly smooth phenomenon in the traditional GMM method. Since frames are processed independently, the GMM based tr...

2007
Xi Yang Man-Hung Siu Herbert Gish Brian Kan-Wing Mak

In this paper, we adopt the boosting framework to improve the performance of acoustic-based Gaussian mixture model (GMM) Language Identification (LID) systems. We introduce a set of low-complexity, boosted target and anti-models that are estimated from training data to improve class separation, and these models are integrated during the LID backend process. This results in a fast estimation pro...

2004
Eric G. Hansen Raymond E. Slyh Timothy R. Anderson

This paper compares three approaches to building phoneme-specific Gaussian mixture model (GMM) speaker recognition systems on the NIST 2003 Extended Data Evaluation to a baseline GMM system covering all of the phonemes. The individual performance of any given phoneme-specific GMM system falls below the performance of the baseline GMM, but fusing the top 40 performing scores of the individual ph...

2013
Zuheng Ming Denis Beautemps Gang Feng

In this paper, we present a statistical method based on GMM modeling to map the acoustic speech spectral features to visual features of Cued Speech in the regression criterion of Minimum Mean-Square Error (MMSE) in a low signal level which is innovative and different with the classic text-to-visual approach. Two different training methods for GMM, namely Expecting-Maximization (EM) approach and...

2013
Matthias Paulik

This paper investigates a method for training bottleneck (BN) features in a more targeted manner for their intended use in GMM-HMM based ASR. Our approach adds a GMM acoustic model activation layer to a standard BN feature extraction (FE) neural network and performs lattice-based MMI training on the resulting network. After training, the network is reverted back into a working BN FE network by ...

2010
Man-Wai Mak Wei Rao

Using GMM-supervectors as the input to SVM classifiers (namely, GMM-SVM) is one of the promising approaches to text-independent speaker verification. However, one unaddressed issue of this approach is the severe imbalance between the numbers of speaker-class utterances and impostor-class utterances available for training a speaker-dependent SVM. This paper proposes a resampling technique – name...

2011
Amr H. Nour-Eldin Peter Kabal

In this paper, we extend our previous work on exploiting speech temporal properties to improve Bandwidth Extension (BWE) of narrowband speech using Gaussian Mixture Models (GMMs). By quantifying temporal properties through information theoretic measures and using delta features, we have shown that narrowband memory significantly increases certainty about highband parameters. However, as delta f...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید