نتایج جستجو برای: wiener index predicted moderately

تعداد نتایج: 616412  

B. FURTULA I. GUTMAN J. TOŠOVIĆ M. ESSALIH M. MARRAKI

Whereas there is an exact linear relation between the Wiener indices of kenograms and plerograms of isomeric alkanes, the respective terminal Wiener indices exhibit a completely different behavior: Correlation between terminal Wiener indices of kenograms and plerograms is absent, but other regularities can be envisaged. In this article, we analyze the basic properties of terminal Wiener indices...

2012
Yajing Wang Yumei Hu

The Wiener index of a graph is the sum of the distances between all pairs of vertices. In fact, many mathematicians have study the property of the sum of the distances for many years. Then later, we found that these problems have a pivotal position in studying physical properties and chemical properties of chemical molecules and many other fields. Fruitful results have been achieved on the Wien...

Journal: :Computers & Mathematics with Applications 2008
M. H. Khalifeh Hassan Yousefi-Azari Ali Reza Ashrafi

Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...

Journal: :Applied Mathematics and Computation 2017
Marthe Bonamy Martin Knor Borut Luzar Alexandre Pinlou Riste Skrekovski

We prove a conjecture of Nadjafi-Arani et al. on the difference between the Szeged and the Wiener index of a graph (M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi: Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Modelling 55 (2012), 1644–1648). Namely, if G is a 2-connected non-complete graph on n vertices, then Sz (G) −W (G) ≥ 2n − 6. Furthermore, the equality is ob...

Journal: :Australasian J. Combinatorics 1994
Roger C. Entringer Amram Meir John W. Moon László A. Székely

The Wiener index W( G) of a connected graph G is the sum of the distances d( u, v) between all pairs of vertices u and v of G. This index seems to have been introduced in [22] where it was shown that certain physical properties of various paraffin species are correlated with the Wiener index of the tree determined by the carbon atoms of the corresponding molecules. Canfield, Robinson, and Rouvr...

Journal: :Discrete Mathematics 2009
Peter Dankelmann Ivan Gutman Simon Mukwembi Henda C. Swart

If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index We of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on We in terms of order and size. In particular we prove the asymptotically sharp upper bound We(G) ≤ 25 55 n5 + O(n9/2) for gr...

Journal: :iranian journal of mathematical chemistry 2010
t. došlić a. graovac d. vukičević f. cataldo o. ori

we derived explicit formulae for the eccentric connectivity index and wiener index of2-dimensional square-octagonal tuc4c8(r) lattices with open and closed ends. newcompression factors for both indices are also computed in the limit n-->∞.

Journal: :Theor. Comput. Sci. 2013
Guifu Su Liming Xiong Yi Sun Daobin Li

7 n 2  ≤ WW (G1) + WW (G2) + WW (G3) ≤ 2  n + 2 4  + n 2  + 4(n − 1). The corresponding extremal graphs are characterized. Published by Elsevier B.V.

Journal: :Discrete Applied Mathematics 2014
Martin Knor M. Macaj Primoz Potocnik Riste Skrekovski

Let G be a graph. The Wiener index of G, W (G), is defined as the sum of distances between all pairs of vertices of G. Denote by L i (G) its i-iterated line graph. In the talk, we will consider the equation W (L i (T)) = W (T) where T is a tree and i ≥ 1.

A. GANAGI H. RAMANE H. WALIKAR

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->