نتایج جستجو برای: wiener index
تعداد نتایج: 402843 فیلتر نتایج به سال:
The Wiener index W( G) of a connected graph G is the sum of the distances d( u, v) between all pairs of vertices u and v of G. This index seems to have been introduced in [22] where it was shown that certain physical properties of various paraffin species are correlated with the Wiener index of the tree determined by the carbon atoms of the corresponding molecules. Canfield, Robinson, and Rouvr...
If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index We of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on We in terms of order and size. In particular we prove the asymptotically sharp upper bound We(G) ≤ 25 55 n5 + O(n9/2) for gr...
we derived explicit formulae for the eccentric connectivity index and wiener index of2-dimensional square-octagonal tuc4c8(r) lattices with open and closed ends. newcompression factors for both indices are also computed in the limit n-->∞.
7 n 2 ≤ WW (G1) + WW (G2) + WW (G3) ≤ 2 n + 2 4 + n 2 + 4(n − 1). The corresponding extremal graphs are characterized. Published by Elsevier B.V.
Let G be a graph. The Wiener index of G, W (G), is defined as the sum of distances between all pairs of vertices of G. Denote by L i (G) its i-iterated line graph. In the talk, we will consider the equation W (L i (T)) = W (T) where T is a tree and i ≥ 1.
The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.
The Wiener index of a graph G is defined as the sum of all distances between distinct vertices of G. In this paper an algorithm for constructing distance matrix of a zig-zag polyhex nanotube is introduced. As a consequence, the Wiener index of this nanotube is computed.
In this paper, we investigate how the Wiener index of unicyclic graphs varies with graph operations. These results are used to present a sharp lower bound for the Wiener index of unicyclic graphs of order n with girth and the matching number β ≥ 3g 2 . Moreover, we characterize all extremal graphs which attain the lower bound.
The Wiener index of a graph, which is the sum of the distances between all pairs of vertices, has been well studied. Recently, Sills and Wang in 2012 proposed two conjectures on the maximal Wiener index of trees with a given degree sequence. This note proves one of the two conjectures and disproves the other.
If G is a connected graph with vertex set V , then the eccentric connectivity index of G, ξ(G) is defined as ∑ deg(v).ec(v) where deg(v) is the degree of a vertex v and ec(v) is its eccentricity. The Wiener index W (G) = 1 2 [ ∑ d(u, v)], the hyper-Wiener index WW (G) = 1 2 [ ∑ d(u, v) + ∑ d(u, v)] and the reverseWiener index ∧(G) = n(n−1)D 2 −W (G), where d(u, v) is the distance of two vertice...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید