نتایج جستجو برای: weighted knn
تعداد نتایج: 105149 فیلتر نتایج به سال:
k-Nearest Neighbor (KNN) is one of the most popular algorithms for pattern recognition. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different data sets. The traditional KNN text classification algorithm has three limitations: (i) calculation complexity due to the usage of all the training samples for classification, (ii) the perf...
In a wireless mobile environment, data broadcasting provides an efficient way to disseminate data. Via data broadcasting, a server can provide location-based services to a large client population in a wireless environment. Among different location-based services, the k nearest neighbors (kNN) search is important and is used to find the k closest objects to a given point. However, the kNN search...
k-Nearest Neighbor (KNN) is one of the most popular algorithms for pattern recognition. Many researchers have found that the KNN classifier may decrease the precision of classification because of the uneven density of t raining samples .In view of the defect, an improved k-nearest neighbor algorithm is presented using shared nearest neighbor similarity which can compute similarity between test ...
Abstract Acute myeloid leukemia (AML) M4, M5, and M7 are subtypes of derived from cell derivatives that influences the results identification AMLs, which includes myeloblast, monoblast, megakaryoblast. Furthermore, they divided into more specific types, including myeloblasts, promyelocytes, monoblasts, promonocytes, monocytes, megakaryoblasts, must be clearly identified in order to further calc...
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
The K-nearest neighbor (KNN) classifier is one of the simplest and most common classifiers, yet its performance competes with the most complex classifiers in the literature. The core of this classifier depends mainly on measuring the distance or similarity between the tested example and the training examples. This raises a major question about which distance measures to be used for the KNN clas...
The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitor...
Activity recognition is one of the most important technology behind many applications such as medical research, human survey system and it is an active research topic in health care and smart homes. Smart phones are equipped with various built-in sensing platforms like accelerometer, gyroscope, GPS, compass sensor and barometer, we can design a system to capture the state of the user. Activity ...
The k-Nearest Neighbor (kNN) classification approach is conceptually simple – yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e. g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each ins...
k Nearest Neighbors (kNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kNN algorithm which can effectively handle both Gaussian d...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید