نتایج جستجو برای: vertex transitive
تعداد نتایج: 46628 فیلتر نتایج به سال:
The polycirculant conjecture asserts that every vertex-transitive digraph has a semiregular automorphism, that is, a nontrivial automorphism whose cycles all have the same length. In this paper we investigate the existence of semiregular automorphisms of edge-transitive graphs. In particular, we show that any regular edge-transitive graph of valency three or four has a semiregular automorphism.
Every finite, self-dual, regular (or chiral) 4-polytope of type {3, q, 3} has a trivalent 3-transitive (or 2-transitive) medial layer graph. Here, by dropping self-duality, we obtain a construction for semisymmetric trivalent graphs (which are edgebut not vertex-transitive). In particular, the Gray graph arises as the medial layer graph of a certain universal locally toroidal regular 4-polytope.
A theorem of A. Schrijver asserts that a d–regular bipartite graph on 2n vertices has at least ( (d− 1)d−1 dd−2 )n perfect matchings. L. Gurvits gave an extension of Schrijver’s theorem for matchings of density p. In this paper we give a stronger version of Gurvits’s theorem in the case of vertex-transitive bipartite graphs. This stronger version in particular implies that for every positive in...
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
In this paper, we give a characterisation for class of edge-transitive Cayley graphs and provide method constructing valency 4 with arbitrarily large vertex stabiliser. particular, in the last section, obtain certain extensions results Li et al. (Tetravalent odd number vertices, J Comb Theory Ser B 96:164–181, 2006) on half-transitive graphs.
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید