نتایج جستجو برای: total domination polynomial
تعداد نتایج: 899455 فیلتر نتایج به سال:
A subset S ⊆ V in a graph G = (V,E) is a total [1, 2]-set if, for every vertex v ∈ V , 1 ≤ |N(v) ∩ S| ≤ 2. The minimum cardinality of a total [1, 2]-set of G is called the total [1, 2]-domination number, denoted by γt[1,2](G). We establish two sharp upper bounds on the total [1,2]-domination number of a graph G in terms of its order and minimum degree, and characterize the corresponding extrema...
a total dominating set of a graph $g$ is a set $d$ of vertices of $g$ such that every vertex of $g$ has a neighbor in $d$. the total domination number of a graph $g$, denoted by $gamma_t(g)$, is~the minimum cardinality of a total dominating set of $g$. chellali and haynes [total and paired-domination numbers of a tree, akce international ournal of graphs and combinatorics 1 (2004), 6...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pr...
A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید