نتایج جستجو برای: topic model

تعداد نتایج: 2231604  

2012
Xianpei Han Le Sun

Entity Linking (EL) has received considerable attention in recent years. Given many name mentions in a document, the goal of EL is to predict their referent entities in a knowledge base. Traditionally, there have been two distinct directions of EL research: one focusing on the effects of mention’s context compatibility, assuming that “the referent entity of a mention is reflected by its context...

2012
Athina Spiliopoulou Amos J. Storkey

We examine the problem of learning a probabilistic model for melody directly from musical sequences belonging to the same genre. This is a challenging task as one needs to capture not only the rich temporal structure evident in music, but also the complex statistical dependencies among different music components. To address this problem we introduce the Variable-gram Topic Model, which couples ...

Journal: :IJIRR 2014
Rami Ayadi Mohsen Maraoui Mounir Zrigui

In this paper, the authors present latent topic model to index and represent the Arabic text documents reflecting more semantics. Text representation in a language with high inflectional morphology such as Arabic is not a trivial task and requires some special treatments. The authors describe our approach for analyzing and preprocessing Arabic text then we describe the stemming process. Finally...

2006
John F. Canny Tye Lawrence Rattenbury John Canny Tye Rattenbury

Factor language models, like Latent Semantic Analysis, represent documents as mixtures of topics, and have a variety of applications. Normally, the mixture is computed at the whole-document level, that is, the entire document contains material on several topics, without specifying where they occur in the document. In this paper, we describe a new model which computes the topic mixture estimate ...

2007
Jordan L. Boyd-Graber David M. Blei Xiaojin Zhu

We develop latent Dirichlet allocation with WORDNET (LDAWN), an unsupervised probabilistic topic model that includes word sense as a hidden variable. We develop a probabilistic posterior inference algorithm for simultaneously disambiguating a corpus and learning the domains in which to consider each word. Using the WORDNET hierarchy, we embed the construction of Abney and Light (1999) in the to...

Journal: :Pattern Recognition 2014
Pengfei Hu Wenju Liu Wei Jiang Zhanlei Yang

Latent topic model such as Latent Dirichlet Allocation (LDA) has been designed for text processing and has also demonstrated success in the task of audio related processing. The main idea behind LDA assumes that the words of each document arise from a mixture of topics, each of which is a multinomial distribution over the vocabulary. When applying the original LDA to process continuous data, th...

2017
Theodore T. Allen Zhenhuan Sui Nathan Parker

2009
Diane J. Hu

We describe a probabilistic model for learning musical key-profiles from symbolic and audio files of polyphonic, classical music. Our model is based on Latent Dirichlet Allocation (LDA), a statistical approach for discovering hidden topics in large corpora of text. In our adaptation of LDA, music files play the role of text documents, groups of musical notes play the role of words, and musical ...

2012
Xianling Mao Zhaoyan Ming Tat-Seng Chua Si Li Hongfei Yan Xiaoming Li

Supervised hierarchical topic modeling and unsupervised hierarchical topic modeling are usually used to obtain hierarchical topics, such as hLLDA and hLDA. Supervised hierarchical topic modeling makes heavy use of the information from observed hierarchical labels, but cannot explore new topics; while unsupervised hierarchical topic modeling is able to detect automatically new topics in the data...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید