نتایج جستجو برای: strong b metric space
تعداد نتایج: 1737871 فیلتر نتایج به سال:
The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...
In [Fuzzy Sets and Systems 27 (1988) 385-389], M. Grabiec in- troduced a notion of completeness for fuzzy metric spaces (in the sense of Kramosil and Michalek) that successfully used to obtain a fuzzy version of Ba- nachs contraction principle. According to the classical case, one can expect that a compact fuzzy metric space be complete in Grabiecs sense. We show here that this is not the case,...
The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...
Meir and Keeler in 1 considered an extension of the classical Banach contraction theorem on a complete metric space. Kirk et al. in 2 extended the Banach contraction theorem for a class of mappings satisfying cyclical contractive conditions. Eldred and Veeramani in 3 introduced the following definition. Let A and B be nonempty subsets of a metric space X. A map T : A ∪ B → A ∪ B, is a cyclic co...
In [1] the pseudo-metric dist min on compact subsets A and B of a topological space generated from arbitrary metric space is defined. Using this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maximum of the two pseudo-distances: from A to B and from B to A. We justify its distance properties. At the end we define some special notions which enable to apply the Hausdorff d...
We prove that certain Lipschitz properties of the inverse F-1 of a set-valued map F are inherited by the map (f+F)~x when / has vanishing strict derivative. In this paper, we present an inverse mapping theorem for set-valued maps F acting from a complete metric space I toa linear space Y with a (translation) invariant metric. We prove that, for any function f: X -> Y with "vanishing strict deri...
In [2] the pseudo-metric distmax min on compact subsets A and B of a topological space generated from arbitrary metric space is defined. Using this notion we define the Hausdorff distance (see e.g. [6]) of A and B as a maximum of the two pseudo-distances: from A to B and from B to A. We justify its distance properties. At the end we define some special notions which enable to apply the Hausdorf...
A dilatation structure encodes the approximate self-similarity of a metric space. A metric space (X, d) which admits a strong dilatation structure (definition 2.2) has a metric tangent space at any point x ∈ X (theorem 4.1), and any such metric tangent space has an algebraic structure of a conical group (theorem 4.2). Particular examples of conical groups are Carnot groups: these are simply con...
in this article, we have focused one some basic and productive information about the properties of spectrum and singular values related to compact operators which are ideals in a c*-algebra of bounded operators. considering a two-sided connection between the family of symmetric gauge functions on sequence of singular values of compact operators and symmetric norms on finite dimensional ope...
in this paper, we introduce the cone normed spaces and cone bounded linear mappings. among other things, we prove the baire category theorem and the banach--steinhaus theorem in cone normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید