نتایج جستجو برای: space feature
تعداد نتایج: 705392 فیلتر نتایج به سال:
Transfer learning as a new machine learning paradigm has gained increasing attention lately. In situations where the training data in a target domain are not sufficient to learn predictive models effectively, transfer learning leverages auxiliary source data from related domains for learning. While most of the existing works in this area are only focused on using the source data with the same r...
The problem of data augmentation in feature space is considered. A new architecture, denoted the FeATure TransfEr Network (FATTEN), is proposed for the modeling of feature trajectories induced by variations of object pose. This architecture exploits a parametrization of the pose manifold in terms of pose and appearance. This leads to a deep encoder/decoder network architecture, where the encode...
Spatial attention can operate like a spotlight whose scope can vary depending on task demands. Emotional states contribute to the spatial extent of attentional selection, with the spotlight focused more narrowly during anxious moods and more broadly during happy moods. In addition to visual space, attention can also operate over features, and we show here that mood states may also influence att...
The perception of a visual target can be strongly influenced by flanking stimuli. In static displays, performance on the target improves when the distance to the flanking elements increases-presumably because feature pooling and integration vanishes with distance. Here, we studied feature integration with dynamic stimuli. We show that features of single elements presented within a continuous mo...
Variable selection in high-dimensional space characterizes many contemporary problems in scientific discovery and decision making. Fan and Lv [8] introduced the concept of sure screening to reduce the dimensionality. This article first reviews the part of their ideas and results and then extends them to the likelihood based models. The techniques are then applied to disease classifications in c...
In many pattern recognition applications, feature space expansion is a key step for improving the performance of the classifier. In this paper, we (i) expand the discrete feature space by generating all orderings of values of k discrete attributes exhaustively, (ii) modify the well-known decision tree and rule induction classifiers (ID3, Quilan, 1986 [1] and Ripper, Cohen, 1995 [2]) using these...
Image registration is a difficult task especially when spurrious image intensity differences and spatial variations between the two images are present. To robustify image registration algorithms to such spurrious variations it can be useful to employ an image registration matching criteria on higher dimensional feature spaces. This paper will present an overview of our recent work on image regi...
We study the effect of different feature space normalization techniques in adverse acoustic conditions. Recognition tests are reported for cepstral mean and variance normalization, histogram normalization, feature space rotation, and vocal tract length normalization on a German isolated word recognition task with large acoustic mismatch. The training data was recorded in clean office environmen...
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید