نتایج جستجو برای: signal denoising

تعداد نتایج: 424441  

Journal: :Signal Processing 2011
Alexander Wong Akshaya Kumar Mishra Wen Zhang Paul W. Fieguth David A. Clausi

A novel stochastic approach based on Markov-Chain Monte Carlo sampling is investigated for the purpose of image denoising. The additive image denoising problem is formulated as a Bayesian least squares problem, where the goal is to estimate the denoised image given the noisy image as the measurement and an estimated posterior. The posterior is estimated using a nonparametric importance-weighted...

2015
Michael Elad

In this paper we propose a generic recursive algorithm for improving image denoising methods. Given the initial denoised image, we suggest repeating the following ”SOS” procedure: (i) (S)trengthen the signal by adding the previous denoised image to the degraded input image, (ii) (O)perate the denoising method on the strengthened image, and (iii) (S)ubtract the previous denoised image from the r...

2014
Mohammed J Alhaddad Mahmoud I Kamel Meena M Makary Hani Hargas Yasser M Kadah

BACKGROUND The signals acquired in brain-computer interface (BCI) experiments usually involve several complicated sampling, artifact and noise conditions. This mandated the use of several strategies as preprocessing to allow the extraction of meaningful components of the measured signals to be passed along to further processing steps. In spite of the success present preprocessing methods have t...

2014
Tahar Omari Fethi Bereksi-Reguig

The phonocardiograms (PCGs), recording of heart sounds, have many advantages over traditional auscultation in that they may be replayed and analyzed for spectral and frequency information. PCG is not a widely used diagnostic tool as it could be. One of the major problems with PCG is noise corruption. Many sources of noise may pollute a PCG signal including lung and breath sounds, environmental ...

Journal: :CoRR 2015
Yanting Ma Junan Zhu Dror Baron

We study compressed sensing (CS) signal reconstruction problems where an input signal is measured via matrix multiplication under additive white Gaussian noise. Our signals are assumed to be stationary and ergodic, but the input statistics are unknown; the goal is to provide reconstruction algorithms that are universal to the input statistics. We present a novel algorithmic framework that combi...

Journal: :Digital Signal Processing 2006
Brij N. Singh Arvind K. Tiwari

Over the years ElectroCardioGram (ECG) signal has been used to assess the cardiovascular condition of humans. In practice, real time acquisition and transmission of the ECG may contain noise signals superimposed on it. In general, the signal processing algorithms employed for denoising provide optimal performance and eliminate the high frequency noise between any two beats contained in a contin...

2017
Jing Xu Zhongbin Wang Chao Tan Xinhua Liu César M. A. Vasques

Generally, the sound signal produced by transmission unit or cutting unit contains abundant information about the working state of a machine. The acoustic-based diagnosis system presents some distinct advantages in some severe conditions particularly due to its unique non-contact measurement and unlimited use at the installation site. However, the original acoustic signal collected from manufac...

2014

Magnetic Resonance Imaging is the best technique used in medical fields for diagnosis of brain tumors at advanced stages. Removing noise from the original MRI is still a challenging problem for researchers. Various approaches are designed and followed for Denoising. A new signal-preserving technique for noise suppression in event-related magnetic resonance imaging (MRI) data is proposed based o...

2016

Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising techniques could enhance their value, provided that signal statistics and image resolution are not compromised. Here, a new denoising method based on wavelet based bayes shrinkage method of the measured noise power from each signal acquisition is presented. Bayes shrink method denoising assumes no prio...

ژورنال: فیزیک زمین و فضا 2018

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید