Let μ be a probability measure on the real line with finite moments of all orders. Apply the Gram-Schmidt orthogonalization process to the system {1, x, x, . . . , xn, . . . } to get orthogonal polynomials Pn(x), n ≥ 0, which have leading coefficient 1 and satisfy (x − αn)Pn(x) = Pn+1(x) + ωnPn−1(x). In general it is almost impossible to use this process to compute the explicit form of these po...