نتایج جستجو برای: seidel laplacian energy
تعداد نتایج: 679779 فیلتر نتایج به سال:
We have recently considered decomposing a system of nonlinear equations by defining new variables corresponding to the intermediate results in the evaluation process. In that previous work, we applied both a derivative-free component solution process and an interval Gauss–Seidel method to the large, sparse system of equations so obtained. An analysis of the component solution process indicates ...
respectively. There are many iterative methods such as GMRES [7] and Bi-CGSTAB [9] algorithms for solving Eq. (1.1) which are more efficient than the Jacobi and Gauss-Seidel methods. However, when these methods are combined with the more efficient methods, for example as a preconditioner, can be quite successful. For example see [4, 6]. It has been proved that if A is a strictly diagonally domi...
A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary order in space and time can easily be obtained. The conservation properties hold on transformed grids.
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
In this article, we establish the existence of minimizers for energy integrals associated with the p-Laplacian in RN with the admissible set being a rearrangement class of a given function. Some representation formulae of the minimizers are also stated.
consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...
consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید