نتایج جستجو برای: riesz fractional derivative
تعداد نتایج: 122778 فیلتر نتایج به سال:
Fractional analysis is applied to describe classical dynamical systems. Fractional derivative can be defined as a fractional power of derivative. The infinitesimal generators {H, ·} and L = G(q, p)∂q + F (q, p)∂p, which are used in equations of motion, are derivative operators. We consider fractional derivatives on a set of classical observables as fractional powers of derivative operators. As ...
in this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form d_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0x(0)= x'(0)=0, x'(1)=beta x(xi), where $d_{0^{+}}^{alpha}$ denotes the standard riemann-liouville fractional derivative, 0an illustrative example is also presented.
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
There is a debate among contemporary mathematicians about what it really means by a fractional derivative. The question arose as a consequence of introducing a ‘new’ definition of a fractional derivative. In a reply Ortigueira and Machado [1] came up with several very important criteria to determine whether a given derivative is a fractional derivative. According to their criterion, the new fra...
In this paper, an optimization method is used for solving a fractional optimal control problem with significant applications in chemical engineering. The considered optimal control is the control system of the isothermal continuous stirred tank reactors. The Riemann-Liouville fractional derivative is used to describe the mathematical model of control system. For solving the fractional optimal ...
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and Vázquez [13, 14], where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy...
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید