نتایج جستجو برای: rickart modules
تعداد نتایج: 57842 فیلتر نتایج به سال:
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
Let R be a commutative ring and M be an R-module. We say that M is fully primary, if every proper submodule of M is primary. In this paper, we state some characterizations of fully primary modules. We also give some characterizations of rings over which every module is fully primary, and of those rings over which there exists a faithful fully primary module. Furthermore, we will introduce some ...
In the present paper, by considering the notion of MV-modules which is the structure that naturally correspond to lu-modules over lu-rings, we prove some results on prime A-ideals and state some conditions to obtain a prime A-ideal in MV-modules. Also, we state some conditions that an A-ideal is not prime and investigate conditions that $Ksubseteq bigcup _{i=1}^{n}K_{i}$ implies $Ksubseteq K_{j...
In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.
We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of a...
The following definition is an example of defining things by mapping properties, that is, by the way the object relates to other objects, rather than by internal structure. The first proposition, which says that there is at most one such thing, is typical, as is its proof. Let R be a commutative ring with 1. Let S be a set. A free R-moduleM on generators S is an R-module M and a set map i : S →...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید