نتایج جستجو برای: pexiderized cubic functional equation

تعداد نتایج: 832816  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه 1389

چکیده ندارد.

Journal: :Abstract and Applied Analysis 2007

Journal: :I. J. Network Security 2018
Gang Lu Linyuan Xuan Xuyun Nie Zhiguang Qin Bo Liu

Medium Field Equation (MFE) multivariate public key cryptosystems were broken by High Order Linearization Equation (HOLE) attack. In order to avoid HOLE attack, we proposed an improvement of MFE, Cubic MFE public key encryption scheme. In our construction, multiplications of three second order matrices were used to get a set of cubic polynomials in the central map. Through theoretical analysis ...

Journal: :international journal of nonlinear analysis and applications 2010
s. zolfaghari

in  this paper, we investigate the generalizedhyers-ulam-rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{z}-{0,pm1}$) in $p-$banach spaces.

D. Ebrahimi Bagha, M. Azhini M. S. Asgari N. Ghafoori Adl

The purpose of this paper is to solve the seventh-order functional equation as follows:  --------------------------- Next, we study the stability of this type of functional equation. Clearly, the function ----------  holds in this type functional equation. Also, we prove Hyers-Ulam stability for this type functional equation in the β-Gaussian Banach space.  

2013
A. Sadeghi

In this paper some asymptotic behaviors of the Pexiderized additive mappings can be proved for functions on commutative semigroup to a complex normed linear space under some suitable conditions. As a consequence of our result, we give some generalizations of Skof theorem and S.-M. Joung theorem. Furthermore, in this note we present a affirmative answer to problem 18, in the thirty-first ISFE.

Journal: :Results in Mathematics 2021

Let $$(S,+)$$ be an abelian semigroup, let $$(H,+)$$ a uniquely 2-divisible, group and $$\sigma ,\tau $$ two endomorphisms of S. In this paper, we find the solutions $$f:S\rightarrow H$$ following Drygas type functional Eq. 1 $$\begin{aligned} f(x+\sigma (y))+f(x+\tau (y))=2f(x)+f(\sigma (y))+f(\tau (y)), \quad x,y\in S, \end{aligned}$$ in terms additive bi-additive maps. Further, solve partly ...

Journal: :Journal of Functional Analysis 2013

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید