نتایج جستجو برای: nonnegative signed total roman domination
تعداد نتایج: 840992 فیلتر نتایج به سال:
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
We provide two algorithms counting the number of minimum Roman dominating functions of a graph on n vertices in (1.5673) n time and polynomial space. We also show that the time complexity can be reduced to (1.5014) n if exponential space is used. Our result is obtained by transforming the Roman domination problem into other combinatorial problems on graphs for which exact algorithms already exist.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید