نتایج جستجو برای: nitride semiconductors
تعداد نتایج: 41330 فیلتر نتایج به سال:
Heteroepitaxy of semiconductors on two-dimensional (2-d) atomic layered materials enables the use of flexible and transferable inorganic electronic and optoelectronic devices in various applications. Herein, we report the shapeand morphology-controlled van der Waals (vdW) epitaxy of ZnO nanostructures on hexagonal boron nitride (hBN) insulating layers for an architectured semiconductor integrat...
We present a systematic study of the current-voltage characteristics and electroluminescence of gallium nitride (GaN) nanowire on silicon (Si) substrate heterostructures where both semiconductors are n-type. A novel feature of this device is that by reversing the polarity of the applied voltage the luminescence can be selectively obtained from either the nanowire or the substrate. For one polar...
An approach for reducing reverse-bias leakage currents in Schottky contacts formed to nitride semiconductor heterostructures grown by molecular-beam epitaxy is described, demonstrated, and analyzed. By incorporation of a GaN cap layer atop a conventional AlxGa1−xN/GaN heterostructure field-effect transistor epitaxial layer structure, the direction of the electric field at the metal-semiconducto...
This paper describes the development of a new analysis and crystal growth method for next generation infrared materials, namely, dilute nitride III-V semiconductors, which may be used in future low-cost night vision systems. The key to this method is isotopic enrichment of nitrogen-15 during material growth via molecular beam epitaxy, which allows enhanced detection of nitrogen using resonant n...
Hollow graphitic carbon nitride (HCN) ZrO2/g-C3N4 hybrid composites (HCN–ZR) and the target catalyst Fe/ZrO2/g-C3N4 (HCN–FZR) were prepared successfully by a solvo-thermal method and evaluated for photo-degradation of organic pollutants, i.e. MO, and herbicides, metsulfuron methyl (MTSM). These materials were characterized by a variety of techniques, including Fourier transform infrared spectro...
Understanding the photoexcitation processes in semiconductors is critical for the design of advanced photocatalytic materials. Nevertheless, traditional viewpoints focus on photogenerated free charge carriers, which are somehow invalid once the many-body effects are taken into account, especially for polymeric photocatalysts. Here we systematically investigate the photoexcitation processes invo...
Development of wide-bandgap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visibleor solar-blind detection, which would eliminate the need f...
A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p...
Recognized as technologically important materials for optoelectronics, III-nitride wide-bandgap semiconductors are used in light-emitting diodes (LEDs) with emission wavelengths from the ultraviolet to amber, and blue/UV-emitting laser diodes.1 These materials are excellent for photonic devices because of their large energy bandgaps, their highly efficient light emission, and their ability to b...
There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultipl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید