نتایج جستجو برای: nearest neighbor model

تعداد نتایج: 2133366  

2002
Yufei Tao Dimitris Papadias Qiongmao Shen

A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., “find all my nearest gas stations during my route from point s to point e”). The result contains a set of tuples, such that point is the NN of all points in the corresponding interval. Existing methods for continuous nearest neighbor search are based on the repetitiv...

2012
Rukundo Olivier Cao Hanqiang

This paper presents the nearest neighbor value (NNV) algorithm for high resolution (H.R.) image interpolation. The difference between the proposed algorithm and conventional nearest neighbor algorithm is that the concept applied, to estimate the missing pixel value, is guided by the nearest value rather than the distance. In other words, the proposed concept selects one pixel, among four direct...

Journal: :CoRR 2007
David Pritchard

A mobile agent in a network wants to visit every node of an n-node network, using a small number of steps. We investigate the performance of the following \nearest neighbor" heuristic: always go to the nearest unvisited node. If the network graph never changes, then from (Rosenkrantz, Stearns and Lewis, 1977) and (Hurkens and Woeginger, 2004) it follows that (n logn) steps are necessary and su ...

Journal: :Statistical Analysis and Data Mining 2010
Ruixin Guo Sounak Chakraborty

The k nearest neighbor classification (k-NN) is a very simple and popular method for classification. However, it suffers from a major drawback, it assumes constant local class posterior probability. It is also highly dependent on and sensitive to the choice of the number of neighbors k. In addition, it severely lacks the desired probabilistic formulation. In this article, we propose a Bayesian ...

2007
Jiahua Chen Jun Shao

NEAREST NEIGHBOR IMPUTATION Jiahua Chen1 University of Waterloo Jun Shao2 University of Wisconsin-Madison Abstract Nearest neighbor imputation is one of the hot deck methods used to compensate for nonresponse in sample surveys. Although it has a long history of application, theoretical properties of the nearest neighbor imputation method are unknown prior to the current paper. We show that unde...

Journal: :Discrete & Computational Geometry 1992
Mike Paterson F. Frances Yao

The “nearest neighbor” relation, or more generally the “k nearest neighbors” relation, defined for a set of points in a metric space, has found many uses in computational geometry and clustering analysis, yet surprisingly little is known about some of its basic properties. In this paper, we consider some natural questions that are motivated by geometric embedding problems. We derive bounds on t...

2007
Charles Elkan

The nearest-neighbor method is perhaps the simplest of all algorithms for predicting the class of a test example. The training phase is trivial: simply store every training example, with its label. To make a prediction for a test example, first compute its distance to every training example. Then, keep the k closest training examples, where k ≥ 1 is a fixed integer. Look for the label that is m...

1998
CHRISTOPHER HOFFMAN

Benjamini, Pemantle, and Peres constructed nearest neighbor processes which have predictability profiles that decay faster than that of the simple random walk. Häggström and Mossel found processes with even faster decaying predictability profiles. We prove that rate of decay achieved by Häggström and Mossel is optimal.

2001
Stefan Berchtold Christian Böhm Daniel A. Keim Florian Krebs Hans-Peter Kriegel

Nearest-neighbor queries in high-dimensional space are of high importance in various applications, especially in content-based indexing of multimedia data. For an optimization of the query processing, accurate models for estimating the query processing costs are needed. In this paper, we propose a new cost model for nearest neighbor queries in high-dimensional space, which we apply to enhance t...

2017
Weide Li Jinran Wu

Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Ex...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید