نتایج جستجو برای: linear 2 normed space
تعداد نتایج: 3272183 فیلتر نتایج به سال:
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
In the present paper, we study some properties of fuzzy norm of linear operators. At first the bounded inverse theorem on fuzzy normed linear spaces is investigated. Then, we prove Hahn Banach theorem, uniform boundedness theorem and closed graph theorem on fuzzy normed linear spaces. Finally the set of all compact operators on these spaces is studied.
The concept of b-linear functional and its different types continuity in linear n-normed space are presented some their properties being established. We derive the Uniform Boundedness Principle Hahn-Banach extension Theorem with help bounded functionals case spaces discuss examples applications. Finally, we present weak*convergence for sequence space.
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
In this paper, the nonlinear stability of a functional equation in the setting of non-Archimedean normed spaces is proved. Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean space, the and the theory of functional equations are also presented Key word: Hyers Ulam Rassias stability • cubic mappings • generalized normed space • Banach spac...
Recall that a metric space M is said to be complete if every Cauchy sequence in M converges to a limit in M . Not all metric spaces are complete, but it is a fact that all metric spaces can be “completed”, in a way that preserves the essential structure of the metric space. If the space in question is a normed linear space this process completes the space to a Banach space, and an inner product...
,ABSTRACT. There is a formula (Gelfand’s formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operator T defined on a complete topological vector space, locally convex. We also show an easy way to find a n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید