نتایج جستجو برای: lasso
تعداد نتایج: 4548 فیلتر نتایج به سال:
We consider the problem of model selection and estimation in sparse high dimensional linear regression models with strongly correlated variables. First, we study the theoretical properties of the dual Lasso solution, and we show that joint consideration of the Lasso primal and its dual solutions are useful for selecting correlated active variables. Second, we argue that correlation among active...
A Large Scale Simulation Optimization (LASSO) framework is being developed by the authors. Linux clusters are the target platform for the framework, specifically cluster resources on the NSF TeraGrid. The framework is designed in a modular fashion that simplifies coupling with simulation model executables, allowing application of simulation optimization approaches across problem domains. In thi...
In many linear regression problems, explanatory variables are activated in groups or clusters; group lasso has been proposed for regression in such cases. This paper studies the nonasymptotic regression performance of group lasso using `1/`2 regularization for arbitrary (random or deterministic) design matrices. In particular, the paper establishes under a statistical prior on the set of nonzer...
BACKGROUND LASSO is a penalized regression method that facilitates model fitting in situations where there are as many, or even more explanatory variables than observations, and only a few variables are relevant in explaining the data. We focus on the Bayesian version of LASSO and consider four problems that need special attention: (i) controlling false positives, (ii) multiple comparisons, (ii...
Background and Objective: The evaluation of the hospitals performance in order to improve the quality of services provided is of great importance. This study aimed to evaluate the performance of teaching hospitals affiliated to Shiraz University of Medical Sciences (SUMS) using Pabon Lasso graph before and after the implementation of the health system transformation plan. Materials and Metho...
The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems must first be overcome. One key problem is ...
We consider the problem of estimating a sparse linear regression vector β∗ under a gaussian noise model, for the purpose of both prediction and model selection. We assume that prior knowledge is available on the sparsity pattern, namely the set of variables is partitioned into prescribed groups, only few of which are relevant in the estimation process. This group sparsity assumption suggests us...
In the sparse linear regression setting, we consider testing the significance of the predictor variable that enters the current lasso model, in the sequence of models visited along the lasso solution path. We propose a simple test statistic based on lasso fitted values, called the covariance test statistic, and show that when the true model is linear, this statistic has an Exp(1) asymptotic dis...
Sparse linear inverse problems appear in a variety of settings, but often the noise contaminating observations cannot accurately be described as bounded by or arising from a Gaussian distribution. Poisson observations in particular are a characteristic feature of several real-world applications. Previous work on sparse Poisson inverse problems encountered several limiting technical hurdles. Thi...
We consider “one-at-a-time” coordinate-wise descent algorithms for a class of convex optimization problems. An algorithm of this kind has been proposed for the L1-penalized regression (lasso) in the lterature, but it seems to have been largely ignored. Indeed, it seems that coordinate-wise algorithms are not often used in convex optimization. We show that this algorithm is very competitive with...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید