نتایج جستجو برای: k means method

تعداد نتایج: 2217835  

Journal: :International Journal of Advanced Computer Science and Applications 2014

Journal: :CoRR 2017
Srikanta Kolay Kumar Sankar Ray Abhoy Chand Mondal

K-means (MacQueen, 1967) [1] is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set to a predefined, say K number of clusters. Determination of K is a difficult job and it is not known that which value of K can partition the objects as per our intuition. To overcome this probl...

Journal: :Pattern Recognition Letters 2003
Yiu-ming Cheung

This paper presents a generalized version of the conventional k-means clustering algorithm [Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, University of California Press, Berkeley, 1967, p. 281]. Not only is this new one applicable to ellipse-shaped data clusters without dead-unit problem, but also performs correct clustering without pre-assigning the exact...

Journal: :journal of tethys 0

a well-known algorithm of clustering is k-means by which the data are divided into k classes based upon a distance criterion. in the present research, by using k-means method for classifying data derived from exploration boreholes in the parkam deposit, the optimum k has been calculated and then the data have been clustered and the relative geochemical behavioral characteristics analyzed. the c...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم 1388

خوشه بندی فرایندی است که در طی آن مجموعه ای از نمونه ها به خوشه هایی تقسیم می شوند که اعضای هرخوشه بیشترین شباهت را به یکدیگر داشته باشند و خوشه های مختلف با یکدیگر بیشترین تفاوت را داشته باشند. خوشه بندی یکی از تکنیک های داده کاوی و آنالیز داده متعارف می باشد. درخوشه بندی داده ها، در مسائل با اندازه داده بزگتر رسیدن به حل بهینه مشکل تر می باشد و در نتیجه مدت زمان لازم برای رسیدت به حل های قابل...

2012
Ragesh Jaiswal Nitin Garg

k-means++ [5] seeding procedure is a simple sampling based algorithm that is used to quickly find k centers which may then be used to start the Lloyd’s method. There has been some progress recently on understanding this sampling algorithm. Ostrovsky et al. [10] showed that if the data satisfies the separation condition that ∆k−1(P ) ∆k(P ) ≥ c (∆i(P ) is the optimal cost w.r.t. i centers, c > 1...

2016
George I. Lambrou Maria Braoudaki

Background: Microarray technology has revolutionized the way genomic analysis has been performed. High-throughput data acquisition, brought up a challenge in data comprehension i.e. in gene expression. Methods: k-means cluster obtained after analysis of miRNA expression data have been sorted by an algorithmic procedure. Results: The proposed method managed to sort k-means centroids and manifest...

Journal: :Theor. Comput. Sci. 2013
Manu Agarwal Ragesh Jaiswal Arindam Pal

The Lloyd’s algorithm, also known as the k-means algorithm, is one of the most popular algorithms for solving the k-means clustering problem in practice. However, it does not give any performance guarantees. This means that there are datasets on which this algorithm can behave very badly. One reason for poor performance on certain datasets is bad initialization. The following simple sampling ba...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید