نتایج جستجو برای: impulsive functional differential equations
تعداد نتایج: 1032564 فیلتر نتایج به سال:
In this paper, the notions of integral 0 φ -stability of ordinary impulsive differential equations are introduced. The definition of integral 0 φ -stability depends significantly on the fixed time impulses. Sufficient conditions for integral 0 φ -stability are obtained by using comparison principle and piecewise continuous cone valued Lyapunov functions. A new comparison lemma, connecting the s...
In real world, the ecological systems are usually perturbed by human exploitation activities such as planting and harvesting and so on. In order to obtain a more accurate description for such phenomenon, the impulsive differential equations play an important role. This paper is concerned with a kind of almost periodic Schoener's competition model with pure-delays and impulsive effects. By using...
In the present paper, we investigate the existence, uniqueness and continuous dependence on initial data of mild solutions of first order nonlocal semilinear functional impulsive integro-differential equations of more general type with finite delay in Banach spaces. Our analysis is based on semigroup theory and Banach contraction theorem.
This article presents the results on existence, uniqueness and stability of mild solutions of impulsive stochastic semilinear neutral functional differential equations without a Lipschitz condition and with a Lipschitz condition. The results are obtained by using the method of successive approximations. 2000 Mathematical Subject Classification: 93E15,60H15,35R12.
In this article, we study a class of impulsive stochastic neutral partial functional differential equations in a real separable Hilbert space. By using Banach fixed point theorem, we give sufficient conditions for the existence and uniqueness of a mild solution. Also the exponential p-stability of a mild solution and its sample paths are obtained.
This article presents the results on existence, uniqueness and stability of mild solution for impulsive stochastic semilinear functional differential equations with non-Lipschitz condition and Lipschitz condition. The results are obtained by using the method of successive approximation and Bihari’s inequality.
By using the theory of semigroups of growth α, we prove the existence and uniqueness of the mild solution for the random impulsive functional differential equations involving almost sectorial operators. An example is given to illustrate the theory. c ©2012 NGA. All rights reserved.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید