نتایج جستجو برای: hyers ulam stability

تعداد نتایج: 300781  

Journal: :Kyungpook mathematical journal 2015

Journal: :Journal of Inequalities and Applications 2022

Abstract A thermostat model described by a second-order fractional difference equation is proposed in this paper with one sensor and two sensors boundary conditions depending on positive parameters using the Lipschitz-type inequality. By means of well-known contraction mapping Brouwer fixed-point theorem, we provide new results existence uniqueness solutions. In work use Caputo operator Hyer–Ul...

2015
CHOONKIL PARK

In this paper, we solve the additive ρ -functional inequalities ‖ f (x+ y)− f (x)− f (y)‖ ∥∥∥ρ ( 2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ (0.1) and ∥∥∥2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2) where ρ is a fixed non-Archimedean number with |ρ| < 1 . Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in non-Archimedean...

2004
BELAID BOUIKHALENE Belaid Bouikhalene

In this paper, we study the Hyers-Ulam stability problem for the following functional equation (E(K)) ∑ φ∈Φ ∫ K f(xkφ(y)k)dωK(k) = |Φ|f(x)g(y), x, y ∈ G, where G is a locally compact group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g : G −→ C are continuous complex-valued functions such that f satisfies the Kan...

2003
Jae-Hyeong Bae

If the answer is affirmative, the functional equation for homomorphisms is said to be stable in the sense of Hyers and Ulam because the first result concerning the stability of functional equations was presented by Hyers. Indeed, he has answered the question of Ulam for the case where G1 and G2 are assumed to be Banach spaces (see [8]). We may find a number of papers concerning the stability re...

2009
YONGJIN LI LIUBIN HUA G. Wang

The aim of this paper is to prove the stability in the sense of Hyers–Ulam stability of a polynomial equation. More precisely, if x is an approximate solution of the equation x + αx + β = 0, then there exists an exact solution of the equation near to x.

C. Park R. Saadati S. Shakeri

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.

Journal: :Applied Mathematics Letters 2003

Journal: :Applied Mathematics Letters 2011

Journal: :Electronic Journal of Qualitative Theory of Differential Equations 2014

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید