نتایج جستجو برای: hyers ulam stability
تعداد نتایج: 300781 فیلتر نتایج به سال:
Abstract A thermostat model described by a second-order fractional difference equation is proposed in this paper with one sensor and two sensors boundary conditions depending on positive parameters using the Lipschitz-type inequality. By means of well-known contraction mapping Brouwer fixed-point theorem, we provide new results existence uniqueness solutions. In work use Caputo operator Hyer–Ul...
In this paper, we solve the additive ρ -functional inequalities ‖ f (x+ y)− f (x)− f (y)‖ ∥∥∥ρ ( 2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ (0.1) and ∥∥∥2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2) where ρ is a fixed non-Archimedean number with |ρ| < 1 . Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in non-Archimedean...
In this paper, we study the Hyers-Ulam stability problem for the following functional equation (E(K)) ∑ φ∈Φ ∫ K f(xkφ(y)k)dωK(k) = |Φ|f(x)g(y), x, y ∈ G, where G is a locally compact group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g : G −→ C are continuous complex-valued functions such that f satisfies the Kan...
If the answer is affirmative, the functional equation for homomorphisms is said to be stable in the sense of Hyers and Ulam because the first result concerning the stability of functional equations was presented by Hyers. Indeed, he has answered the question of Ulam for the case where G1 and G2 are assumed to be Banach spaces (see [8]). We may find a number of papers concerning the stability re...
The aim of this paper is to prove the stability in the sense of Hyers–Ulam stability of a polynomial equation. More precisely, if x is an approximate solution of the equation x + αx + β = 0, then there exists an exact solution of the equation near to x.
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید