نتایج جستجو برای: global domination
تعداد نتایج: 454806 فیلتر نتایج به سال:
A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. A set S of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex v ∈ V is adjacent to an element of S and every vertex of V − S is adjacent to a vertex in V − S. The total domination number of a graph G denoted by γt(G) is the minimum card...
The following fundamental result for the domination number γ(G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ(G) ≤ ln(δ + 1) + 1 δ + 1 n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34...
We study the paired-domination problem on interval graphs and circular-arc graphs. Given an interval model with endpoints sorted, we give an O(m + n) time algorithm to solve the paired-domination problem on interval graphs. The result is extended to solve the paired-domination problem on circular-arc graphs in O(m(m+ n)) time. MSC: 05C69, 05C85, 68Q25, 68R10, 68W05
We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
We introduce the domination search game which can be seen as a natural modiica-tion of the well-known node search game. Various results concerning the domination search number of a graph are presented. In particular, we establish a very interesting connection between domination graph searching and a relatively new graph parameter called dominating target number.
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
The TAG adjunction operation operates by splitting a tree at one node, which we will call the adjunction site. In the resulting structure, the subtrees above and below the adjunction site are separated by, and connected with, the auxiliary tree used in the composition. As the adjunction site is thus split into two nodes, with a copy in each subtree, a natural way of formalizing the adjunction o...
A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید