نتایج جستجو برای: garch family models

تعداد نتایج: 1304725  

2014
Michael K. Pitt Sheheryar Malik Arnaud Doucet

Discrete-time stochastic volatility (SV) models have generated a considerable literature in financial econometrics. However, carrying out inference for these models is a difficult task and often relies on carefully customized Markov chain Monte Carlo techniques. Our contribution here is twofold. First, we propose a new SV model, namely SV–GARCH, which bridges the gap between SV and GARCH models...

2009
Bin Chen

Modelling and detecting structural changes in GARCH processes have attracted a great amount of attention in econometrics over the past few years. We generalize Dahlhaus and Rao (2006)’s time varying ARCH processes to time varying GARCH processes and show the consistency of the weighted quasi maximum likelihood estimator. A class of generalized likelihood ratio tests are proposed to check smooth...

2017
Andrea Bucci

Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical applica...

Mosayeb Pahlavani Reza Roshan

This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...

2008
KANCHAN MUKHERJEE Kanchan Mukherjee

This paper derives asymptotic normality of a class of M-estimators in the generalized autoregressive conditional heteroskedastic ~GARCH! model+ The class of estimators includes least absolute deviation and Huber’s estimator in addition to the well-known quasi maximum likelihood estimator+ For some estimators, the asymptotic normality results are obtained only under the existence of fractional u...

2002

a for forecasting purposes arises from the fact that this conditional mean is allowed to be a random varible which depends on the available data, and evolves with time. The conditional variance, however, is r simply var [x e x ] = var [ε ] =σ , which remains constant regardless of the given data. Thus, the linea t t −1 t ε AR (1) model fails to adequately describe the conditional variance. In p...

2009
ZHIJIE XIAO ROGER KOENKER

Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study esti...

2010
V. Omelchenko

The paper aims to show methodology of parameter estimation of the stable GARCH(1,1) model. There are represented and compared 3 methods of finding estimates of their parameters. We assume that we have a stable GARCH(1,1) model with the stable symmetric innovation. We search for the estimates of parameters of the stable GARCH model under assumption that we don’t know anything about parameters, t...

2009
Helmut Herwartz HELMUT HERWARTZ HELMUT LUETKEPOHL

In the presence of generalized conditional heteroscedasticity (GARCH) in the residuals of a vector error correction model (VECM), maximum likelihood (ML) estimation of the cointegration parameters has been shown to be efficient. On the other hand, full ML estimation of VECMs with GARCH residuals is computationally difficult and may not be feasible for larger models. Moreover, ML estimation of V...

2001
Peter B uhlmann Alexander J. McNeil

A simple iterative algorithm for nonparametric 1rst-order GARCH modelling is proposed. This method o4ers an alternative to 1tting one of the many di4erent parametric GARCH speci1cations that have been proposed in the literature. A theoretical justi1cation for the algorithm is provided and examples of its application to simulated data from various stationary processes showing stochastic volatili...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید