نتایج جستجو برای: garch bekk

تعداد نتایج: 4179  

2003
JEFF FLEMING

We show that, for three common SARV models, fitting a minimum mean square linear filter is equivalent to fitting a GARCH model. This suggests that GARCH models may be useful for filtering, forecasting, and parameter estimation in stochastic volatility settings. To investigate, we use simulations to evaluate how the three SARV models and their associated GARCH filters perform under controlled co...

2006
Henghsiu Tsai

We consider the parameter restrictions that need to be imposed in order to ensure that the conditional variance process of a GARCH(p, q) model remains non-negative. Previously, Nelson and Cao (1992) provided a set of necessary and sufficient conditions for the aforementioned non-negativity property for GARCH(p, q) models with p ≤ 2, and derived a sufficient condition for the general case of GAR...

ژورنال: تحقیقات اقتصادی 2018

نوسانات و شوک‌های نفتی می‌تواند در کشورهای تولیدکننده‌ی نفت عامل اثرگذار بر شاخص بورس اوراق بهادار باشد. هدف مطالعه حاضر، بررسی آثار شوک‌های نفتی اخیر بر شاخص قیمت بورس اوراق بهادار می‌باشد. بدین منظور دو رژیم اطلاعاتی کوتاه‌مدت و بلندمدت، ایجاد و از الگوی MV-GARCH و روش حل BEKK و داده‌های روزانه از فروردین ماه سال 1390 تا دی‌ماه 1394 سال استفاده شده است. نتایج مطالعه نشان می‌دهد که در کوتاه‌مد...

ژورنال: :اقتصاد انرژی ایران 0
محمدحسن فطرس عضو هیئت علمی دانشگاه بوعلی سینا همدان مریم هوشیدری دانشجوی کارشناسی ارشد اقتصاد دانشگاه بوعلی سینا همدان

نفت ازجمله کالاهای استراتژیک جهان وبه عنوان یکی از نهاده­های مهم تولید هرکشور به شمار می­رود. با توجه به­تأثیر گسترده­ی منفی نوسانات قیمت نفت بر بخش­های مختلف اقتصاد ایران، مانعی برای کارایی بازاربورس به شمار می­رود و بر عملکرد سرمایه­گذاران تأثیر­گذار می­باشد. بر این اساس نیازمند درک دقیق تغییرات قیمت نفت برروی شاخص سهام هستند. تعیین قیمت نفت به عوامل متعددی بستگی دارد که اغلب آنها از کنترل تو...

2009
Helmut Herwartz HELMUT HERWARTZ HELMUT LUETKEPOHL

In the presence of generalized conditional heteroscedasticity (GARCH) in the residuals of a vector error correction model (VECM), maximum likelihood (ML) estimation of the cointegration parameters has been shown to be efficient. On the other hand, full ML estimation of VECMs with GARCH residuals is computationally difficult and may not be feasible for larger models. Moreover, ML estimation of V...

2010
Boris Buchmann Gernot Müller

GARCH is one of the most prominent nonlinear time series models, both widely applied and thoroughly studied. Recently, it has been shown that the COGARCH model, which has been introduced a few years ago by Klüppelberg, Lindner and Maller, and Nelson’s diffusion limit are the only functional continuous-time limits of GARCH in distribution. In contrast to Nelson’s diffusion limit, COGARCH reprodu...

1999
Changli He

In this paper we consider a general ...rst-order power ARCH process and, in particular, a special case in which the power parameter approaches zero. These considerations give us the autocorrelation function of the logarithms of the squared observations for ...rstorder exponential and logarithmic GARCH processes. These autocorrelations decay exponentially with the lag and may be used for checkin...

2005
Edmond H. C. Wu Philip L. H. Yu

Volatility modelling of asset returns is an important aspect for many financial applications, e.g., option pricing and risk management. GARCH models are usually used to model the volatility processes of financial time series. However, multivariate GARCH modelling of volatilities is still a challenge due to the complexity of parameters estimation. To solve this problem, we suggest using Independ...

2004
Efthymios G. Tsionas

Considering alternative models for exchange rates has always been a central issue in applied research. Despite this fact, formal likelihood-based comparisons of competing models are extremely rare. In this paper, we apply the Bayesian marginal likelihood concept to compare GARCH, stable, stable GARCH, stochastic volatility, and a new stable Paretian stochastic volatility model for seven major c...

2001
Peter B uhlmann Alexander J. McNeil

A simple iterative algorithm for nonparametric 1rst-order GARCH modelling is proposed. This method o4ers an alternative to 1tting one of the many di4erent parametric GARCH speci1cations that have been proposed in the literature. A theoretical justi1cation for the algorithm is provided and examples of its application to simulated data from various stationary processes showing stochastic volatili...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید