نتایج جستجو برای: fuzzy contractive mapping
تعداد نتایج: 288163 فیلتر نتایج به سال:
Let A and B be two nonempty subsets of a metric space X. A mapping T : A∪B → A∪B is said to be noncyclic if T (A) ⊆ A and T (B) ⊆ B. For such a mapping, a pair (x, y) ∈ A×B such that Tx = x, Ty = y and d(x, y) = dist(A,B) is called a best proximity pair. In this paper we give some best proximity pair results for noncyclic mappings under certain contractive conditions.
In this paper, we introduce the notion of fuzzy R−ψ−contractive mappings and prove some relevant results on existence uniqueness fixed points for type in setting non-Archimedean metric spaces. Several illustrative examples are also given to support our newly proven results. Furthermore, apply main a solution Caputo fractional differential equations.
this ability in fuzzy uml, practically leaves the customers and market’s need without response in this important and vital area. here, the available sequence diagrams in fuzzy uml will map into fuzzy petri net. however, the formal models ability will be added to the semi-formal fuzzy uml. this formalization will add the automatic processing ability to the semi-formal fuzzy uml. further more, ...
Fuzzy cell mapping is a novel computational technique that combines fuzzy logic and a simple cell mapping method. In a simple cell mapping method, the information about mapping locations of image cells is never incorporated into the method. This limits the usage of a simple cell mapping method. In our fuzzy cell mapping method, we account for the mapping locations of image cells and incorporate...
This ability in fuzzy UML, practically leaves the customers and market’s need without response in this important and vital area. Here, the available sequence diagrams in fuzzy UML will map into fuzzy Petri net. However, the formal models ability will be added to the Semi-formal fuzzy UML. This formalization will add the automatic processing ability to the Semi-formal fuzzy UML. Further more, t...
in this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. also, we give anew generalization of the mazur-ulam theorem when $x$ is a $2$-fuzzy $2$%-normed linear space or $im (x)$ is a fuzzy $2$-normed linear space, thatis, the mazur-ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...
We establish a generalized Hyers–Ulam–Rassias stability theorem in the fuzzy sense. In particular, we introduce the notion of fuzzy approximate Jensen mapping and prove that if a fuzzy approximate Jensen mapping is continuous at a point, then we can approximate it by an everywhere continuous Jensen mapping. As a fuzzy version of a theorem of Schwaiger, we also show that if every fuzzy approxima...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید