نتایج جستجو برای: fuzzy caputo

تعداد نتایج: 91833  

2009
Miomir S. Stanković Predrag M. Rajković Sladjana D. Marinković

Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .

2018
Thabet Abdeljawad Jehad Alzabut Hui Zhou

In this paper, we investigate the existence of solutions for nonlinear delay Caputo q—fractional difference equations. The main result is proved by means of Krasnoselskii’s fixed point theorem. As an application, we link the conclusion of the main theorem to an existence result for Lotka—Volterra model.

2004
Enza Maria Valente Patrick M. Abou-Sleiman Viviana Caputo Miratul M. K. Muqit Kirsten Harvey Suzana Gispert Zeeshan Ali Domenico Del Turco Anna Rita Bentivoglio Daniel G Healy Alberto Albanese Robert Nussbaum Rafael González-Maldonado Thomas Deller Sergio Salvi Pietro Cortelli William P. Gilks David S. Latchman Robert J. Harvey Bruno Dallapiccola Georg Auburger Nicholas W. Wood

Enza Maria Valente, Patrick M. Abou-Sleiman, Viviana Caputo, Miratul M. K. Muqit, Kirsten Harvey, Suzana Gispert, Zeeshan Ali, Domenico Del Turco, Anna Rita Bentivoglio, Daniel G Healy, Alberto Albanese, Robert Nussbaum, Rafael González-Maldonado, Thomas Deller, Sergio Salvi, Pietro Cortelli, William P. Gilks, David S. Latchman, Robert J. Harvey, Bruno Dallapiccola, Georg Auburger, Nicholas W. ...

2015
Hossein Jafari Haleh Tajadodi

In this paper we have used the homotopy analysis method (HAM) to obtain solution of space-time fractional advectiondispersion equation. The fractional derivative is described in the Caputo sense. Some illustrative examples have been presented. The obtained results using homotopy analysis method demonstrate the reliability and efficiency of the proposed algorithm.

2011
JIANG WEI

In this paper, the Caputo time varying singular fractional differential systems with delay and the Riemann-Liouville time varying singular fractional differential systems with delay are considered . By the D− inverse matrix and α − δ function, two fundamental solutions are given. The variation formulae for time varying singular fractional differential systems with delay are obtained. Mathematic...

Journal: :Applied Mathematics and Computer Science 2016
Tadeusz Kaczorek Kamil Borawski

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated ...

Journal: :Applied Mathematics and Computation 2012
Agnieszka B. Malinowska Delfim F. M. Torres

Abstract. The study of fractional variational problems in terms of a combined fractional Caputo derivative is introduced. Necessary optimality conditions of Euler–Lagrange type for the basic, isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions for ...

2015
Serkan Araci Erdoğan Şen Kamil Oruçoğlu

Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynomials based on Mittag-Leffler function. Making use of the Caputo-fractional derivative, we derive some new interesting identities of these polynomials. It turns out that some known results are derived as special cases.

Journal: :Entropy 2018
Xin Liang Yu-Gui Yang Feng Gao Xiaojun Yang Yi Xue

In this paper, an anomalous advection-dispersion model involving a new general Liouville–Caputo fractional-order derivative is addressed for the first time. The series solutions of the general fractional advection-dispersion equations are obtained with the aid of the Laplace transform. The results are given to demonstrate the efficiency of the proposed formulations to describe the anomalous adv...

Journal: :Applied Mathematics and Computation 2015
Krishnan Balachandran V. Govindaraj Margarita Rivero Juan J. Trujillo

In this paper, we study the controllability of linear and nonlinear fractional damped dynamical systems, which involve fractional Caputo derivatives, with different order in finite dimensional spaces using the Mittag-Leffler matrix function and the iterative technique. A numerical example is provided to illustrate the theory.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->