نتایج جستجو برای: forecasting model
تعداد نتایج: 2128277 فیلتر نتایج به سال:
In this paper we investigate the impact of data revisions on forecasting and model selection procedures. A linear ARMA model and nonlinear SETAR model are considered in this study. Two Canadian macroeconomic time series have been analyzed: the real-time monetary aggregate M3 (1977-2000), and residential mortgage credit (1975-1998). The forecasting method we use is multistep-ahead non-adaptive f...
Electrical power forecasting plays a vital role in power system administration and planning. Inaccurate forecasting can lead to the waste of scarce energy resources, electricity shortages, and even power grid collapses. On the other hand, accurate electricity power forecasting can enable reliable guidance for the planning of power production and the operation of a power system, which is also im...
In order to improve the accuracy of grain production forecasting, this study proposed a new combination forecasting model, the model combined stepwise regression method with RBF neural network by assigning proper weights using inverse variance method. By comparing different criteria, the result indicates that the combination forecasting model is superior to other models. The performance of the ...
The grey theory mainly works on systems analysis with poor, incomplete or uncertain messages. The popular grey model, GM(1,1) is efficient for long-term port throughput forecasting. However, it is imperfect when the throughput increases in the curve with S type or the increment of throughput is in the saturation stage. In this case, the throughput forecasting error of grey system model will bec...
Although DEA is a powerful method in evaluating DMUs, it does have some limitations. One of the limitations of this method is the result of the evaluation is based on previously data and the results are not proper for forecasting the future changes. So For this purpose, we design feedback loops for forecasting inputs and outputs through system dynamics and simulation. Then we use DEA model to f...
In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
The least square support vector machines (LSSSVM) model is a novel forecasting approach and has been successfully used to solve time series problems. However, the applications of LSSVM model in a seasonal time series forecasting has not been widely investigated. This study aims at developing a LSSVM model to forecast seasonal time series data. To assess the effectiveness of this model, the airl...
This work examines recent publications in forecasting in various fields, these include: wind power forecasting; electricity load forecasting; crude oil price forecasting; gold price forecasting energy price forecasting etc. In this review, categorization of the processes involve in forecasting are divided into four major steps namely: input features selection; data pre-processing; forecast mode...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید