The Fibonacci cube Γn is obtained from the n-cube Qn by removing all the vertices that contain two consecutive 1s. If, in addition, the vertices that start and end with 1 are removed, the Lucas cube Λn is obtained. The number of vertex and edge orbits, the sets of the sizes of the orbits, and the number of orbits of each size, are determined for the Fibonacci cubes and the Lucas cubes under the...