نتایج جستجو برای: ensemble clustering
تعداد نتایج: 144749 فیلتر نتایج به سال:
Clustering is a central approach for unsupervised learning. After clustering is applied, the most fundamental analysis is to quantitatively compare clusterings. Such comparisons are crucial for the evaluation of clustering methods as well as other tasks such as consensus clustering. It is often argued that, in order to establish a baseline, clustering similarity should be assessed in the contex...
The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be ...
Huge amount of gene expression data have been generated as a result of the human genomic project. Clustering has been used extensively in mining these gene expression data to find important genetic and biological information. Obtaining high quality clustering results is very challenging because of the inconsistency of the results of different clustering algorithms and noise in the gene expressi...
Clustering of high-dimensional biological big data is incredibly difficult and challenging task, as the data space is often too big and too messy. The conventional clustering methods can be inefficient and ineffective on high-dimensional biological big data, because traditional distance measures may be dominated by the noise in many dimensions. An additional challenge in biological big data is ...
Many machine learning algorithms for clustering or dimensionality reduction take as input a cloud of points in Euclidean space, and construct a graph with the input data points as vertices. This graph is then partitioned (clustering) or used to redefine metric information (dimensionality reduction). There has been much recent work on new methods for graph-based clustering and dimensionality red...
We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble--a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: 1) applying different clustering algorithms and 2) applying the same clustering algorithm with different values of pa...
This paper is on a graph clustering scheme inspired by ensemble learning. In short, the idea of ensemble learning is to learn several weak classifiers and use these weak classifiers to form a strong classifier. In this contribution, we use the generic procedure of ensemble learning and determine several weak graph clusterings (with respect to the objective function). From the partition given by...
This research work intends to propose a system with improved cuckoo search based robust ensemble co-clustering algorithm (ICS RECCA) for enzyme clustering. The cuckoo search algorithm has been inspired by the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds (of other species). Some host birds can engage direct conflict with the intruding cuc...
We explore in this paper a novel clustering algorithm, named CORE (standing for CORrelated-Force Ensemble), for categorical data. In general, it is more difficult to perform clustering on categorical data than on numerical data due to the absence of the ordered property in the former. Though several clustering algorithms which concentrate on categorical date were proposed, acquiring the desirab...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید