نتایج جستجو برای: divergence time estimation

تعداد نتایج: 2136009  

Journal: :CoRR 2018
Morteza Noshad Alfred O. Hero

We propose a scalable divergence estimation method based on hashing. Consider two continuous random variables X and Y whose densities have bounded support. We consider a particular locality sensitive random hashing, and consider the ratio of samples in each hash bin having non-zero numbers of Y samples. We prove that the weighted average of these ratios over all of the hash bins converges to fd...

2006
Josée Desharnais François Laviolette Krishna Priya Darsini Moturu Sami Zhioua

In the context of probabilistic verification, we provide a new notion of trace-equivalence divergence between pairs of Labelled Markov processes. This divergence corresponds to the optimal value of a particular derived Markov Decision Process. It can therefore be estimated by Reinforcement Learning methods. Moreover, we provide some PACguarantees on this estimation.

Journal: :Indian Journal of Physics 2022

Accurate estimation of the state charge (SOC) can prolong working life and enhance safety energy storage system. Considering influence noise parameter changes in operating environment, an adaptive fractional-order unscented Kalman filter algorithm is introduced to strengthen accuracy SOC estimation. To verify effectiveness robustness algorithm, simulation carried out under UDDS complex conditio...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم 1389

به طور کلی مدل های پیوند در تحلیل داده های رسته ای در جدول های پیشایندی، به دو گروه مدل های ضربی و غیر ضربی تقسیم می شوند که با وجود اختلاف ذاتی که این مدل-ها با یکدیگر دارند،بعضی از آنها به بعضی دیگر نزدیک هستند. این ملاک نزدیکی را می توان با انواع فاصله ای متریک مناسب سنجید. ما در این پایانامه از معیار اطلاع divergence-?? که فاصله کولبک لیبلر را به عناون یک حالت خاص در بر دارد، برای تعیین مدل...

2014
Kevin R. Moon Alfred O. Hero

The problem of f -divergence estimation is important in the fields of machine learning, information theory, and statistics. While several nonparametric divergence estimators exist, relatively few have known convergence properties. In particular, even for those estimators whose MSE convergence rates are known, the asymptotic distributions are unknown. We establish the asymptotic normality of a r...

Journal: :IEICE Transactions 2011
Osamu Komori Shinto Eguchi

This paper discusses recent developments for pattern recognition focusing on boosting approach in machine learning. The statistical properties such as Bayes risk consistency for several loss functions are discussed in a probabilistic framework. There are a number of loss functions proposed for different purposes and targets. A unified derivation is given by a generator function U which naturall...

2008
Olivier Michel Richard G. Baraniuk

A study of the phase and amplitude sensitivity of the recently proposed R enyi time-frequency information measure leads to the introduction of a new \Jensen-like" divergence measure. While this quantity promises to be a useful indicator of the distance between two time-frequency distributions, it is limited to the analysis of positive deenite TFDs. In spite of this rather severe limitation, thi...

2016
Masatosi Uehara Issei Sato Masahiro Suzuki Kotaro Nakayama Yutaka Matsuo

Generative adversarial networks (GANs) are successful deep generative models. They are based on a two-player minimax game. However, the objective function derived in the original motivation is changed to obtain stronger gradients when learning the generator. We propose a novel algorithm that repeats density ratio estimation and f-divergence minimization. Our algorithm offers a new unified persp...

2015
Shu-en Zhao Yu-ling Li Xian Qu Alexander Katriniok

Due to some key state parameters of vehicle handling stability control are difficult to measure directly, the state optimization estimation algorithm of multi-sensor linear combination based on Strong Tracking Filter (STF) was proposed. Four degrees of freedom vehicle nonlinear dynamics model including longitudinal, lateral and roll motion were established. With the estimator of multi-sensors i...

2017
Jun He Qinghua Zhang Qin Hu Guoxi Sun

In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for statement and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید