نتایج جستجو برای: distance signless laplacian matrix

تعداد نتایج: 601115  

Journal: :Electr. J. Comb. 2010
Saieed Akbari Ebrahim Ghorbani Jacobus H. Koolen Mohammad Reza Oboudi

Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and Laplacian eigenvalues μ1, . . . , μn. It is proved that for any real number α with 0 < α 6 1 or 2 6 α < 3, the inequality qα 1 + · · · + qα n > μ1 + · · · + μn holds, and for any real number β with 1 < β < 2, the inequality q 1 + · · ·+ q n 6 μβ1 + · · ·+ μ β n holds. In both inequalities, the equality is attaine...

Journal: :Electr. J. Comb. 2014
F. Ashraf Behruz Tayfeh-Rezaie

Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q1(G) and Laplacian eigenvalues of G by μ1(G) > · · · > μn−1(G) > μn(G) = 0. It is a conjecture on Laplacian spread of graphs that μ1(G)−μn−1(G) 6 n − 1 or equivalently μ1(G) + μ1(G) 6 2n − 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, μ1(G)μ1(G) 6 n(n − ...

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

2008
Dragoš Cvetković Peter Rowlinson Slobodan K. Simić

We extend our previous survey of properties of spectra of signless Laplacians of graphs. Some new bounds for eigenvalues are given, and the main result concerns the graphs whose largest eigenvalue is maximal among the graphs with fixed numbers of vertices and edges. The results are presented in the context of a number of computer-generated conjectures.

Journal: :journal of linear and topological algebra (jlta) 0
m ghorbani department of mathematics, faculty of science, shahid rajaee teacher training university m hakimi-nezhaad department of math., faculty of science, shahid rajaee teacher training university

‎let $g$ be a graph without an isolated vertex‎, ‎the normalized laplacian matrix $tilde{mathcal{l}}(g)$‎‎is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$‎, where ‎$‎mathcal{‎d}‎$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎g‎$‎‎. ‎the eigenvalues of‎‎$tilde{mathcal{l}}(g)$ are ‎called ‎ ‎ as ‎the ‎normalized laplacian ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید