نتایج جستجو برای: common minimal dominating signed graph
تعداد نتایج: 1021385 فیلتر نتایج به سال:
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ( ) { } − : 1,1 f V D → is called a signed dominating function (SDF) if [ ] ( ) 1 D f N v − ≥ for each vertex v V ∈ . The weight ( ) f ω of f is defined by ( ) ∑ v V f v ∈ . The signed domination number of a digraph D is ( ) ( ) { } γ ω = min is an SDF of s D f f D . Let Cm × Cn denotes the cartesian produ...
According to the classical Friendship Theorem, if G is a finite simple graph such that each two distinct vertices have a unique common neighbor, then G has a dominating vertex. Jian Shen showed that if require only non-neighbors to have a unique common neighbor, then one of the following possibilities hold: i) G has dominating vertex, or ii) G is a strongly regular graph, or iii) G is a bi-regu...
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
In this paper we study some of the structural properties of the set of all minimal total dominating functions (FT ) of cycles and paths and introduce the idea of function reducible graphs and function separable graphs. It is proved that a function reducible graph is a function separable graph. We shall also see how the idea of function reducibility is used to study the structure of FT (G) for s...
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
We consider Upper Domination, the problem of finding a maximum cardinality minimal dominating set in a graph. We show that this problem does not admit an n1− approximation for any > 0, making it significantly harder than Dominating Set, while it remains hard even on severely restricted special cases, such as cubic graphs (APXhard), and planar subcubic graphs (NP-hard). We complement our negativ...
A signed graph is a graph whose edges are signed. In a vertex-signed graph the vertices are signed. The latter is called consistent if the product of signs in every circle is positive. The line graph of a signed graph is naturally vertexsigned. Based on a characterization by Acharya, Acharya, and Sinha in 2009, we give constructions for the signed simple graphs whose naturally vertex-signed lin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید