نتایج جستجو برای: bivariate garch model
تعداد نتایج: 2117836 فیلتر نتایج به سال:
We develop a Markov-switching GARCH model (MS-GARCH) wherein the conditional mean and variance switch in time from one GARCH process to another. The switching is governed by a hidden Markov chain. We provide sufficient conditions for geometric ergodicity and existence of moments of the process. Because of path dependence, maximum likelihood estimation is not feasible. By enlarging the parameter...
ARCH and GARCH models are widely used to model financial market volatilities in risk management applications. Considering a GARCH model with heavy-tailed innovations, we characterize the limiting distribution of an estimator of the conditional Value-at-Risk (VaR), which corresponds to the extremal quantile of the conditional distribution of the GARCH process. We propose two methods, the normal ...
This article applied GARCH model instead AR or ARMA model to compare with the standard BP and SVM in forecasting of the four international including two Asian stock markets indices.These models were evaluated on five performance metrics or criteria. Our experimental results showed the superiority of SVM and GARCH models, compared to the standard BP in forecasting of the four international stock...
In this paper we introduce an exponential continuous time GARCH(p, q) process. It is defined in such a way that it is a continuous time extension of the discrete time EGARCH(p, q) process. We investigate stationarity, mixing and moment properties of the new model. An instantaneous leverage effect can be shown for the exponential continuous time GARCH(p, p) model.
We use a discrete time analysis, giving necessary and sufficient conditions for the almost sure convergence of ARCH(1) and GARCH(1,1) discrete time models, to suggest an extension of the (G)ARCH concept to continuous time processes. Our “COGARCH” (continuous time GARCH) model, based on a single background driving Lévy process, is different from, though related to, other continuous time stochast...
In the recent years, the use of GARCH type (especially, ARMA-GARCH) models and computational-intelligence-based techniques—Support Vector Machine (SVM) and Relevance Vector Machine (RVM) have been successfully used for financial forecasting. This paper deals with the application of ARMA-GARCH, recurrent SVM (RSVM) and recurrent RVM (RRVM) in volatility forecasting. Based on RSVM and RRVM, two G...
In the presence of generalized conditional heteroscedasticity (GARCH) in the residuals of a vector error correction model (VECM), maximum likelihood (ML) estimation of the cointegration parameters has been shown to be efficient. On the other hand, full ML estimation of VECMs with GARCH residuals is computationally difficult and may not be feasible for larger models. Moreover, ML estimation of V...
A simple iterative algorithm for nonparametric 1rst-order GARCH modelling is proposed. This method o4ers an alternative to 1tting one of the many di4erent parametric GARCH speci1cations that have been proposed in the literature. A theoretical justi1cation for the algorithm is provided and examples of its application to simulated data from various stationary processes showing stochastic volatili...
We model the power-law stability in distribution of returns for S&P500 index by the GARCH process which we use to account for the long memory in the variance correlations. Precisely, we analyze the distributions corresponding to temporal aggregation of the GARCH process, i.e., the sum of n GARCH variables. The stability in the power-law tails is controlled by the GARCH parameters. We model the ...
GARCH models with Markov-switching regimes are often used for volatility analysis of nancial time series. Such models imply less persistence in the conditional variance than the standard GARCH model, and potentially provide a signi cant improvement in volatility forecast. Nevertheless, conditions for asymptotic wide-sense stationarity have been derived only for some degenerated models. In this...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید