نتایج جستجو برای: bioliquid filled microtubules
تعداد نتایج: 67085 فیلتر نتایج به سال:
By use of dark-field light microscopy, secretory granules isolated from the anglerfish endocrine pancreas were observed to attach to and release from microtubules assembled in vitro from brain homogenates. Secretory granules only bound to microtubules assembled in the presence of microtubule-associated proteins (MAPs) and not to microtubules assembled from purified tubulin. The addition of a MA...
Neurons, like all cells, face the problem that tubulin forms microtubules with too many or too few protofilaments (pfs). Cells overcome this heterogeneity with the γ-tubulin ring complex, which provides a nucleation template for 13-pf microtubules. Doublecortin (DCX), a protein that stabilizes microtubules in developing neurons, also nucleates 13-pf microtubules in vitro. Using fluorescence mic...
Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by ...
Microtubules are self-assembling biological nanotubes that are essential for cell motility, cell division and intracellular trafficking. Microtubules have outstanding mechanical properties, combining high resilience and stiffness. Such a combination allows microtubules to accomplish multiple cellular functions and makes them interesting for material sciences. We review recent experiments that e...
Microtubules are composed of α-tubulin and β-tubulin dimers. Microtubules yield tubulin dimers when exposed to cold, which reassemble spontaneously to form microtubule fibers at 37°C. However, mammalian neurons, glial cells, and fibroblasts have cold-stable microtubules. While studying the microtubule toxicity mechanisms of the exotoxin Y from Pseudomonas aeruginosa in pulmonary microvascular e...
Microtubules can adjust their length by the mechanism of dynamic instability, that is by switching between phases of growth and shrinkage. Thus far this phenomenon has been studied with microtubules that contain several components, that is, a mixture of tubulin isoforms, with or without a mixture of microtubule-associated proteins (MAPs), which can act as regulators of dynamic instability. Here...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید