نتایج جستجو برای: biohydrogen
تعداد نتایج: 597 فیلتر نتایج به سال:
Greg Burgess, Joel Freeman, Javier G. Fernandez-Velasco, and Keith Lovegrove (1) Centre for Sustainable Energy Systems (CSES), Faculty of Engineering and Information Technology; (2) Photobioenergetics Group, Research School of Biological Sciences (RSBS). The Australian National University Canberra ACT 0200 AUSTRALIA E-mail: [email protected], [email protected], Keith.Lovegr...
Using dark fermentation, hydrogen can be generated from renewable organics including waste materials. Key to successful application of anaerobic fermentation is to uncouple liquid and biomass retention times in reactor system. This paper reviews reactor configurations (fixed-bed, fluidized-bed, upflow anaerobic sludge blanket and continuous stirred tank reactors) and operating processes (batch,...
Glucose fermentation to hydrogen results in the production of acetic and butyric acids. The inhibitory effect of these acids on hydrogen yield was examined by either adding these acids into the feed of continuous flow reactors (external acids), or by increasing glucose concentrations to increase the concentrations of acids produced by the bacteria (self-produced). Acids added to the feed at a c...
The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpo...
Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-cultur...
Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two ‘uptake’ hydrogenase isoenzymes, hydrogenases -1 and -2, and fermentative hydrogen production is catalysed by hydrogenase-3. Harnessing and enhancing the metabolic capability of Escherichia coli to perform a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید