We find a sufficient condition that H is not level based on a reduction number. In particular, we prove that a graded Artinian algebra of codimension 3 with Hilbert function H = (h0, h1, . . . , hd−1 > hd = hd+1) cannot be level if hd ≤ 2d + 3, and that there exists a level Osequence of codimension 3 of type H for hd ≥ 2d+k for k ≥ 4. Furthermore, we show that H is not level if β1,d+2(I ) = β2,...