نتایج جستجو برای: anfis fuzzy c means clustering method
تعداد نتایج: 2947989 فیلتر نتایج به سال:
World Wide Web is a huge repository of web pages and links. It provides abundance information for the Internet users. The growth of web is incredible as it can be seen in present days. Users’ accesses are recorded in web logs. From the user’s perspective, it is very difficult to extract useful knowledge from the huge amount of information and secondly, it is also difficult to extract for the us...
This paper presents an algorithm, called the modified suppressed fuzzy c-means (MS-FCM), that simultaneously performs clustering and parameter selection for the suppressed fuzzy c-means (S-FCM) algorithm proposed by [Fan, J.L., Zhen, W.Z., Xie, W.X., 2003. Suppressed fuzzy c-means clustering algorithm. Pattern Recognition Lett. 24, 1607–1612]. The proposed algorithm is computationally simple, a...
Researchers have observed that multistage clustering can accelerate convergence and improve clustering quality. Two-stage and two-phase fuzzy C-means (FCM) algorithms have been reported. In this paper, we demonstrate that the FCM clustering algorithm can be improved by the use of static and dynamic single-pass incremental FCM procedures. Keywords-Clustering; Fuzzy C-Means Clustering; Incrementa...
In complex manufacturing, the system parameters have dynamic and nonlinear characters. Existing parameters setting methods show low efficiency and accuracy, and some setting experience accumulated in engineering practice can not be fully used. Therefore, an online parameter setting method with improved adaptive neuro-based fuzzy inference model is proposed in this paper. The advantages of ANFIS...
Additionally, if the materials at downstream of bucket spillway are erodible, the ogee spillway is likely to overturn by the time. Therefore, the prediction of the scour after bucket spillway is pretty important. In this study, the scour depths at downstream of bucket spillway are modeled using a new meta-heuristic model. This model is developed by combination of the Adaptive Neuro-Fuzzy Infere...
This work presents a method based on an adaptive neuro-fuzzy inference system (ANFIS) for modeling protein secondary structure prediction which aims at acquiring the unknown structure information of target protein directly from its sequence data which is available. The number of input variables and inference rules are commonly too large, sometimes even huge, to make the model building feasible....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید