نتایج جستجو برای: پیشبینی سریهای زمانی شبکههای عصبی مصنوعیطبقه بندی jel e37
تعداد نتایج: 143651 فیلتر نتایج به سال:
هدف تحقیق حاضر مقایسه توانایی اطلاعات حسابداری جهت پیش بینی نوسان شاخص های بورس اوراقبهادار با استفاده از روشهای هوشمند ماشینبردار پشتیبان و شبکه عصبی مصنوعی و روش کلاسیکرگرسیون لجستیک می باشد. نمونه آماری تحقیق شامل 91 شرکت پذیرفته شده بورس اوراق بهادار تهراندر قالب 9 صنعت در محدوده زمانی 1382 الی 1391 است. با در نظر گرفتن 11 متغیر مالی شرکتی، نتایجمطالعه نشان می دهد که علیرغم توانایی پیشبینی ...
We develop a closed-economy DSGE model of the Indian economy and estimate it by Bayesian Maximum Likelihood methods using Dynare. We build up in stages to a model with a number of features important for emerging economies in general and the Indian economy in particular: a large proportion of credit-constrained consumers, a financial accelerator facing domestic firms seeking to finance their inv...
We study 30 vintages of FRB/US, the principal macro model used by the Federal Reserve Board staff for forecasting and policy analysis. To do this, we exploit archives of the model code, coefficients, baseline databases and stochastic shock sets stored after each FOMC meeting from the model’s inception in July 1996 until November 2003. The period of study was one of important changes in the U.S....
We examine the linear-quadratic (LQ) approximation of non-linear stochastic dynamic optimization problems in macroeconomics, in particular for monetary policy. We make four main contributions: first, we draw attention to a general Hamiltonian framework for LQ approximation due to Magill (1977). We show that the procedure for the ‘large distortions’ case of Benigno and Woodford (2003, 2005) is e...
Journal of Nursing Care Quality: April/June 2021 - Volume 36 Issue 2 p E36-E37 doi: 10.1097/NCQ.0000000000000560
در این مطالعه با استفاده از روشهای اقتصادسنجی ARMA ، GARCH و روشهای هوش محاسباتی، شبکهی عصبی مصنوعی و الگوریتم ژنتیک اقدام به پیشبینی میزان صادرات خرمای ایران برای دورهی 1395-1389 شد. بهمنظور انجام بررسیها از دادههای مربوط به دورهی زمانی 1388-1346 استفاده گردید. از دادههای دورهی 1384-1346 بهمنظور مدلسازی و از دادههای 4 سال آخر برای بررسی قدرت پیشبینی استفاده شد. نتایج مطالعه نشا...
Identifying the Common Component of International Economic Fluctuations: A New Approach In this paper, we develop an aggregation procedure using time-varying weights for constructing the common component of international economic fluctuations. The methodology for deriving time-varying weights is based on some stylized features of the data documented in the paper. The model allows for a unified ...
We provide a new way to filter US inflation into trend and cycle components, based on extracting long-run forecasts from the Survey of Professional Forecasters. We operate the Kalman filter in reverse, beginning with observed forecasts, then estimating parameters, and then extracting the stochastic trend in inflation. The trend-cycle model with unobserved components is consistent with numerous ...
This paper investigates the effects of media coverage and macroeconomic conditions on inflation forecast disagreement of German households and professional forecasters. We adopt a Bayesian learning model in which media coverage of inflation affects forecast disagreement by influencing information sets as well as predictor choice. Our empirical results show that disagreement of households depend...
This paper introduces a Markov-Switching model where transition probabilities depend on higher frequency indicators and their lags, through polynomial weighting schemes. The MSV-MIDAS model is estimated via maximum likelihood methods. The estimation relies on a slightly modified version of Hamilton’s recursive filter. We use Monte Carlo simulations to assess the robustness of the estimation pro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید