In this paper we study the transport equation in $\mathbb{R}^{n} \times (0,T)$, $T >0$, $n\ge 2$, $$ \partial \_t f + v\cdot \nabla = g, \quad f(\cdot,0)= f\_0 \text{in }\mathbb{R}^{n}, generalized Campanato spaces $\mathscr{L}^{s}{{q(p, N)}}(\mathbb{R}^{n})$. The critical case is particularly interesting, and applied to local well-posedness problem for incompressible Euler equations a space cl...