نتایج جستجو برای: مدل ترکیبی شبکه عصبی
تعداد نتایج: 163366 فیلتر نتایج به سال:
قیمت نفت، اهمیت و نوسانات آن در طول زمان در اخذ تصمیمات مهم اقتصادی در دنیا، سبب گسترش روشهای مختلفی در پیشبینی قیمت نفت، ازجمله ابزارهای غیرخطی مانند شبکه عصبی شده است. در این مقاله برای در نظر گرفتن عامل زمان در پیشبینی توسط شبکه عصبی، با دریافت بازخورد از شبکه عصبی مصنوعی اصلاح شده با الگوریتم ژنتیک GADNN وقفههای بهینه ناشی از ورودیها و خروجیهای قیمت نفت توسط شبکه عصبی پویا محاسبه میگ...
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
هدف اصلی این تحقیق دستیابی به یک سبد سرمایه مناسب تر برای سرمایه گذاران ریسک پذیر است. در این تحقیق مدل مارکوتیز در تئوری سبد سرمایه به عنوان مدل مقایسه ای استفاده شده است و مدل شبکه عصبی با آن مقایسه شده است. الگوی یادگیری شبکه عصبی، الگوی «پس انتشار خطا» می باشد. سبد انتخابی شامل بیست سهم از بازار بورس اوراق بهادار تهران است که برای یک دوره سیزده ماهه مورد مطالعه قرار گرفته است. در هر دو مدل ...
چکید ه سابقه و هدف مدل رگرسیون کاکس، یکی از روشهای رایج تحلیل دادههای بقا میباشد که قبل از به کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدلهای شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیشبینی بقا میباشند. هدف از این مطالعه، مقایسه توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیشبینی بقای بیماران لوسمی حاد بود. مواد و روش ها در یک مطالعه گذشتهنگر، ...
در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیشبینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدلهای استاتیک و دینامیک در شبکههای عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری میباشد. در این تحقیق آبدهی های ماهانه بین ...
اندازه گیری مستقیم تنوع گونهای امری وقتگیر و هزینهبر بوده و تا حدی به دلیل خطاهای حاصل از نمونهگیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتورهای کمهزینه در پیشبینی تنوع گونهای بوسیله شبکه مدلهای عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونهبرداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتیمتری خاک صورت گر...
نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، بهدلیل عدم جریان سطحی دائمی برداشت بیرویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتیمتر در سال شده است. هدف از این تحقیق پیشبینی سطح آب زیرزمینی در این دشت با استفاده از روشهای هوش مصنوعی و زمین آمار میباشد. در ابتدا با است...
شبیهسازی جریان رودخانه به منظور آگاهی از آورد رودخانه در دورههای زمانی آینده از مسائل مهم و کاربردی در مدیریت منابع آب میباشد. در این پژوهش با استفاده از روشهای هوش مصنوعی (شبکه عصبی MLP , ANFIS با تفکیک شبکهای و خوشهای) و سریهای زمانی دبی ماهانه طالقانرود در محل ایستگاه گلینک در یک گام زمانی آینده پیشبینی گردید. برای مدلهای مختلف 2 ورودی متفاوت شامل: 1- مقادیر دادههای دبی بدون حذف ...
در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید