نتایج جستجو برای: مدل ترکیبی شبکه عصبی

تعداد نتایج: 163366  

قیمت نفت، اهمیت و نوسانات آن در طول زمان در اخذ تصمیمات مهم اقتصادی در دنیا، سبب گسترش روش‌های مختلفی در پیش­بینی قیمت نفت، ازجمله ابزارهای غیرخطی مانند شبکه عصبی شده است. در این مقاله برای در نظر گرفتن عامل زمان در پیش­بینی توسط شبکه عصبی، با دریافت بازخورد از شبکه عصبی مصنوعی اصلاح شده با الگوریتم ژنتیک GADNN وقفه­های بهینه ناشی از ورودی­ها و خروجی‌های قیمت نفت توسط شبکه عصبی پویا محاسبه می­گ...

ژورنال: :مهندسی و مدیریت آبخیز 2010
محمد شعبانی

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

ژورنال: :پژوهش های اقتصادی ایران 0

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

ژورنال: :فصلنامه علمی-پژوهشی بررسیهای حسابداری وحسابرسی 2007
رضا راعی

هدف اصلی این تحقیق دستیابی به یک سبد سرمایه مناسب تر برای سرمایه گذاران ریسک پذیر است. در این تحقیق مدل مارکوتیز در تئوری سبد سرمایه به عنوان مدل مقایسه ای استفاده شده است و مدل شبکه عصبی با آن مقایسه شده است. الگوی یادگیری شبکه عصبی، الگوی «پس انتشار خطا» می باشد. سبد انتخابی شامل بیست سهم از بازار بورس اوراق بهادار تهران است که برای یک دوره سیزده ماهه مورد مطالعه قرار گرفته است. در هر دو مدل ...

ژورنال: :فصلنامه پژوهشی خون 0
سعید حسینی تشنیزی s. hosseini teshnizi دانشگاه علوم پزشکی هرمزگان مهدی تذهیبی m. tazhibi دانشگاه علوم پزشکی اصفهانسازمان اصلی تایید شده: دانشگاه علوم پزشکی هرمزگان (hormozgan university of medical sciences) مینا توسلی فرحی m. tavasoli farahi دانشگاه علوم پزشکی هرمزگانسازمان اصلی تایید شده: دانشگاه علوم پزشکی اصفهان (isfahan university of medical sciences)

چکید ه   سابقه و هدف   مدل رگرسیون کاکس، یکی از روش‏های رایج تحلیل داده‏های بقا می‏باشد که قبل از به ‏کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدل‏های شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیش‏بینی بقا می‏باشند. هدف از این مطالعه، مقایسه‏ توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش‏بینی بقای بیماران لوسمی حاد بود.   مواد و روش ها   در یک مطالعه گذشته‏نگر، ...

سید محمودرضا بهبهانی محمد ابراهیم بنی حبیب, محمد ولی پور

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

اردوان قربانی بهنام بهرامی,

اندازه گیری مستقیم تنوع گونه­ای امری وقت­گیر و ­هزینه­بر بوده و تا حدی به دلیل خطاهای حاصل از نمونه­گیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتور­های کم­هزینه در پیش­بینی تنوع گونه­ای بوسیله شبکه مدل­های عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونه­برداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتی­متری خاک صورت گر...

ژورنال: :جغرافیا و برنامه ریزی 0
عطاالله ندیری استادیار گروه علوم زمین ، دانشگاه تبریز. کیوان نادری دانشجوی کارشناسی ارشد هیدروژئولوژی اصغر اصغری مقدم استاد گروه زمین شناسی، دانشگاه تبریز محمدحسن حبیبی دانشجوی کارشناسی ارشد هیدروژئولوژی

نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، به­دلیل عدم جریان سطحی دائمی برداشت بی­رویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتی­متر در سال شده است. هدف از این تحقیق پیش­بینی سطح آب زیرزمینی در این دشت با استفاده از روش­های هوش مصنوعی و زمین آمار می­باشد. در ابتدا با است...

ژورنال: آبخیزداری ایران 2009
سلاجقه, علی , فتح آبادی, ابوالحسن, مهدوی, محمد,

  شبیه­سازی جریان رودخانه به منظور آگاهی از آورد رودخانه در دوره­های زمانی آینده از مسائل مهم و کاربردی در مدیریت منابع آب می­باشد. در این پژوهش با استفاده از روش­های هوش مصنوعی (شبکه عصبی MLP , ANFIS با تفکیک شبکه­ای و خوشه­ای) و سری­های زمانی دبی ماهانه طالقانرود در محل ایستگاه گلینک در یک گام زمانی آینده پیش­بینی گردید. برای مدل­های مختلف 2 ورودی متفاوت شامل: 1- مقادیر داده­های دبی بدون حذف ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی 1393

در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید