نتایج جستجو برای: فضای هیلبرت مختلط
تعداد نتایج: 28709 فیلتر نتایج به سال:
در این رساله ابتدا به نامساوی هاردی و برخی تعمیم های آن می پردازیم سپس چند نامساوی از نوع هاردی-هیلبرت را بیان و اثبات می کنیم. در ادامه به تجزیه نامساوی های از نوع هاردی-هیلبرت می پردازیم. به این معنی که به هر نامساوی یک جفت نامساوی دیگر از نوع هاردی-هیلبرت متناظر می کنیم که حاصلجمع بهترین ثابت های این دو نامساوی اخیر برابر با بهترین ثابت نامساوی اولیه است. با الهام از فضای دنباله ای وزن دار ب...
در این پایان نامه بر روی نامساوی کوشی - شوارتز و بعضی نامساوی ها در یک شبه c*-مدول هیلبرت مطالعه شده است. نکته اصلی، بررسی یک شبه ضرب داخلی a-مدول در رابطه با شبه ضرب داخلی دیگر است. در این راه بعضی از نامساوی ها همچون اوستراوسکی و نامساوی های مرتبط با ماتریس گرام به طور بهتری ارائه شده است و شبه ضرب داخلی استنتاج شده با مفهوم واریانس و کوواریانس مرتبط است، به علاوه دنباله ای از نامساوی های ت...
در این رساله به مطالعه و بررسی برخی از ویژگی های قاب ها، g-قابها و قاب های مخلوط در فضاهای هیلبرت و *c-مدول های هیلبرت می پردازیم. در ابتدا نشان می دهیم تحت یک سری از شرایط، حاصلجمع مستقیم تعداد شمارایی از g-قاب ها (g-پایه های ریس) یک g-قاب (g-پایه ریس ) برای فضای حاصلجمع مستقیم می باشد. همچنین نشان می دهیم حاصلضرب تانسوری تعداد متناهی از g-قابها (به ترتیب قاب های مخلوط، قاب ها، g-پایه های ریس)...
در این پایاننامه قصد داریم به بررسی نامساوی کوشی ـ شوارتز برای عملگرهای مختلط مقدار خود الحاق روی فضاهای هیلبرت بپردازیم. در این راستا مثال های مختلفی ارائه خواهیم نمود. همچنین معکوس نامساوی مثلثی در c^{*} -مدول های هیلبرت را بررسی خواهیم نمود. بالاخره معکوس نامساوی های کوشی ـ شوارتز جمعی و ضربی را برای فرم های یک و نیم خطی مورد مطالعه قرار خواهیم داد.
فرض کنیم t یک عملگر خطی و کراندار روی فضای هیلبرت h باشد. طیف t عبارت است از مجموعه اعداد مختلط z که به ازای این اعداد، وارون t-zi وجود ندارد. آنالیز طیفی یا نظریهء طیفی مربوط به عملگرهای خطی کراندار، یکی از موضوعات اساسی آنالیز تابعی است که به بررسی اصولی روابط بین یک عملگر و عملگر حلال آن، مجموعه های طیف و حلال و همچنین روابط بین مقادیر ویژه و بردارهای ویژهء یک عملگر می پردازد. این نظریه...
هدف ما در این پایان نامه بیان یک تعریف برای قاب ها در فضای کرین است، که یک اجتماع از پایه های j- متعامد از فضای کرین می باشد. یک j- قاب برای فضای کرین (h,[.,])، یک قاب برای فضای هیلبرت است. اما با ضرب داخلی نامعین [.,] بدست می آید، به این معنی که بوسیله یک زوج از زیرفضاهای j معین یکنواخت ماکزیمال حساب می شود. همچنین، هر j - قاب شامل یک فرمول سازماندهی شده نامعین برای بردارها در h می باشد، که بو...
در این پایان نامه می خواهیم اثبات کنیم که هر قاب ریس،اجتماع تعداد متناهی از دنباله های ریس است. همچنین تجزیه سیستم های موجک را به تعداد متناهی از مجموعه های مستقل خطی با ارائه شرایطی تعمیم می دهیم.نهایتا شرط هم ارزی برای تجزیه مجموعه های متناهی در مجموعه های مستقل خطی ارائه داده می شود.
ما در این پایان نامه به مساله چهارم هیلبرت از دیدگاه هندسه فینسلری می پردازیم. مساله چهارم هیلبرت که مساله خط راست بعنوان کوتاهترین فاصله بین دو نقطه لقب گرفته است به جستجوی همه توابع فاصله بین دو نقطه لقب گرفته است به جستجوی همه توابع فاصله (نه ضرورتا متقارن) می پردازد که روی زیر مجموعه بازی مانند u rn تعریف می شوند و برای هر دو نقطه دلخواه مانند x,y.u ، خط راست در بین منحنی هایی که این دو نقط...
در این رساله انواع مختلف قاب ها را در فضاهای هیلبرت و باناخ معرفی کرده و خواص آنها را بررسی می کنیم. ابتدا با الهام گرفتن از مفهوم $x_{d}$-قاب ها، $g-y_{v}$-قاب ها را در فضاهای باناخ معرفی کرده و عملگرهای ترکیب و تحلیل نظیر این قاب ها را با استفاده از مفهوم $eta$-دوگان بدست می آوریم. همچنین مفهوم قاب های $g$-باناخ را مطرح کرده و شرایط لازم و کافی برای وجود چنین قاب هایی را بدس...
ما در این پایان نامه به یک کلاس از عملگرهای القایی نرم افزار می پردازیم. بدین صورت که جایگزین هایی با بعد متناهی برای l2-نرم در نظر می گیریم و خواص تقریب روی زیرفضاهای هیلبرت از (l2) را مطالعه می کنیم. این کلاس شامل بازآفرینی هسته فضای هیلبرت (rkhs) خواهد بود. نتایج به طور ضمنی برای تجزیه و تحلیل پایه روی فضاهای خطی با بعد متناهی خواهد بود و مسائلی در این زمینه را مورد بررسی قرار خواهیم داد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید