نتایج جستجو برای: عصبی تطابقی

تعداد نتایج: 15574  

ژورنال: آب و فاضلاب 2011

در این مطالعه به‌منظور مدل‌سازی شدت جریان فاضلاب در مراکز دفن زباله از شبکه عصبی مصنوعی استفاده شد. پس از آموزش، شبکه عصبی قادر است براساس داده‌های هواشناسی و مشخصات فاضلاب مرکز دفن، شدت جریان فاضلاب را پیش‌بینی کند. داده‌های ورودی شبکه عصبی شامل پارامترهایی نظیر pH، دما، هدایت الکتریکی فاضلاب مرکز دفن و داده‌های هواشناسی بود. برای ارزیابی و تشریح مدل، مرکز دفن زباله بیروت به‌صورت موردی بررسی ش...

در این مطالعه جهت مدل سازی میزان غلظت تری هالومتان در آب شرب، از شبکه عصبی مصنوعی استفاده شده است. پس از آموزش، شبکه عصبی قادر است براساس مشخصات کیفی آب و میزان غلضت کلر در آب شرب، میزان غلظت تری هالومتان را پیش بینی کند. جهت ارزیابی و تشریح مدل، آب تصفیه خانه سنگر واقع در شهرستان رشت به صورت موردی  بررسی شده است. از اندازه گیری های انجام یافته بر روی آب شرب تصفیه خانه سنگر، داده های مورد نیاز،...

ژورنال: آب و فاضلاب 2012
حامد شریفی دارانی علی طالبی علیرضا مقدم‌نیا محمد تقی دستورانی,

در دهه‌های اخیر به‌دلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیش‌بینی رواناب از روی داده‌های بارش به مسئله‌ای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشته‌ها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکه‌های عصبی مصنوعی است. در این تح...

اکبری دانا, مریم, براتی دوم, پرستو, علیزاده, لیلا, قائمی, امیر,

مقدمه: هاری یک بیماری نورولوژیک کشنده می‌باشد که توسط ویروس هاری پروتوتایپ جنس لیسا ویروس‌ها ایجاد می‌شود. ویروس هاری به سیستم عصبی مرکزی گرایش دارد و تواناییشان برای تکثیر منجر به بیماری هاری می‌شود. تکثیر ویروس هاری در سیستم عصبی مرکزی اکثر گونه‌های پستانداران از جمله انسان منجر به انسفالومیلیت کشنده می‌گردد. ترکیبی از فاکتورهای حدت و بیماری‌زایی انتقال ویروس هاری را از محل گزش محیطی به نورون...

در این مقاله تلاش شده ‏است با استفاده از ترکیب تبدیل موجک و شبکه عصبی مدلی به‌منظور پیش‌بینی روزانه قیمت گاز طبیعی ارائه شود. در این مدل ترکیبی، از موجک گسسته دابیشز به‌منظور تجزیه سری زمانی قیمت استفاده شده‏، سپس ضرایب تقریبات و جزئیات مؤثر به‌عنوان ورودی شبکه عصبی به‌منظور پیش‌بینی قیمت گاز طبیعی هنری هاب به‌عنوان مرجعی برای قیمت گاز طبیعی در آمریکا به‌کار رفته ‏است. مقایسه عملکرد نسبی مدل تر...

ژورنال: مرتع و آبخیزداری 2014

خشک‌سالی پدیده‌ای است که برای پیش‌بینی آن نمی‌توان از مدل مشخصی استفاده کرد. بر این اساس، محققان تلاش می‌کنند با استفاده از مدل‌های پیشرفته دقت پیش‌بینی‌ها را افزایش دهند. در این زمینه، مدل‌های استوکاستیک خطی، شبکة عصبی مصنوعی، و مدل‌های هیبرید می‌توانند در دقت پیش‌بینی مفید باشند. تحقیق حاضر به بررسی کارایی مدل‌های اتورگرسیو میانگین متحرک تجمعی (ARIMA)، شبکة عصبی مصنوعی مستقیم (DMSNN)، شبکة عص...

داوود حسین پور سید مهدی الوانی,

در این مقاله سعی شده است علاوه بر ارایه مطالب جدید در زمینه شبکه های عصبی مصنوعی، کاربرد آن در تصمیم گیری راهبردی مدیران ارایه شود. در اینجا شبکه های عصبی مصنوعی برای اجرای یک مدول تصمیم در چارچوب تصمیم گیری راهبردی مورد بررسی قرار گرفته است. این مقاله چگونگی بکارگیری و پذیرش شبکه های عصبی در چارچوب تصمیم گیری راهبردی را توصیف می کند. در بخش اول مختصری از ادبیات شبکه های عصبی مصنوعی و در بخش دو...

سیّدمحمّدابراهیم درخشانی سیّدمصطفی حسینعلی‌پور محمّدمهدی عارفی

در این مقاله از شبکه­های عصبی برای شناسایی خواص ترمودینامیکی محلول لیتیوم برماید-آب که یکی از پرکاربردترین محلول‌ها در شبیه‌سازی‌های ترمودینامیکی می‌باشد، استفاده شده است. برای آموزش شبکه عصبی از داده‌های شبیه‌سازی شده ناشی از تحلیل ترمودینامیکی استفاده شده است. به جای استفاده از معادلات پیچیده دیفرانسیلی و داده‌های تجربی محدود، استفاده از مدل شبکه‌ عصبی استخراج شده پاسخ‌های سریع‌تر و ساده‌تری ...

ژورنال: محیط شناسی 2009
آلاله قائمی اشکان فرخ‌نیا روح‌اله نوری محمد علی عبدلی

پیش‌بینی کمیت تولید، نقشی اساسی در بهینه‌سازی و برنامه‌ریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...

به دلیل مشکلات نمونه‎برداری و عدم دقّت کافی معادلات تجربی، سنجش و گزینش مناسب‎ترین روش‎های برآورد رسوبات بار کف، اهمّیّت زیادی دارد.هدف پژوهش حاضر، مقایسة کارآیی مدل‎های آماری شبکة عصبی مصنوعی و منحنی سنجة رسوب در برآورد رسوبات بار کف است؛ بدین منظور، ابتدا 5 ایستگاه هیدرومتری دارای بیشترین تعداد نمونه انتخاب شدند؛ سپس منحنی سنجة رسوب و مدل شبکة عصبی مصنوعی با 70% داده‌های آنها ساخته و ارزیابی دقّت...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید