نتایج جستجو برای: شبکه عصبی پس انتشار خطا
تعداد نتایج: 196432 فیلتر نتایج به سال:
حوضه آبریز کشوری در جنوب شرقی شهر خرم آباد در استان لرستان قرار دارد. این حوضه از نظر تقسیم بندی زمین ساخت ایران در زاگرس چین خورده قرار می گیرد. با توجه به نوع سازند های زمین شناسی، وضعیت توپوگرافی و وسعت آن، این حوضه از پتانسیل لغزش بالایی برخوردار بوده و از نظر لغزشی ناپایدار است. در این تحقیق برای پهنه بندی خطر زمین لغزش در این حوضه از روش شبکه عصبی مصنوعی با ساختار پرسپترون چند لایه و الگو...
سود هر سهم یکی از آماره های مالی بسیار مهم است که مورد توجه سرمایه گذاران و تحلیل گران مالی می باشد. سود هر سهم نشان دهنده سودی است که عاید هر سهم عادی می شود و اغلب برای ارزیابی سود آوری و ریسک مرتبط با سود و نیز قضاوت در خصوص قیمت سهام استفاده می شود.اکثریت تحقیقات قبلی که برای پیش بینی سود هر سهم انجام گرفته است از مدل های آماری خطی استفاده کرده اند، اما تحقیقاتی نیز به این نتیجه رسیده اند ک...
زمین لغزش نشان دهنده ی فرایندهای مورفودینامیک است که در زمین های شیب دار رخ داده و به واحد های مسکونی، صنعتی، باغات و زمین های زراعی آسیب می رساند. در این تحقیق برای پهنه بندی زمین لغزش در حوضه ی رودخانه گیوی چای از مدل شبکه عصبی پرسپترون چند لایه از نوع پیش خور پس انتشار(bp)استفاده شد. جهت ارزیابی شبکه ی عصبی ایجاد شده، داده های 41 زمین لغزش رخ داده به سیستم ارائه شد. در کنار آن برای پردازش زم...
وارون سازی داده های ژئوفیزیکی به علت غیرخطی بودن داده ها، فرآیندی بسیار پیچیده است، بخصوص در حالتی که قدرت تفکیک بسیار بالا در عمق نفوذ کم نیز مد نظر باشد. در دو دهه ی اخیر الگوریتم های وارون سازی غیرخطی نظیر شبکه های عصبی و الگوریتم های ژنتیک با رشد قابل توجهی برای تفسیر داده های ژئوفیزیکی مورد استفاده قرار گرفته اند. در این مطالعه وارون سازی داده های ژئوالکتریکخط لوله ی زیرسطحی با قدرت تفکیک ...
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
هدف تحقیق حاضر شناسایی و ارزیابی الگویی برای پیش بینی موفقیت یا شکست طرح های پیشنهادی سرمایه گذاری کشاورزی در مناطق روستایی است. متغیرهای پیش بینی کننده، عبارت اند از مؤلفه های محیط سرمایه گذاری و ویژگی های پروژه. براساس نوشتارهای تخصصی در این زمینه، شبکه عصبی چندلایه پرسپترون با الگوریتم یادگیری پس انتشار خطا، تکنیک و الگوی نسبتاً مناسبی برای تبیین مسئله به شمار می آید. برای ارزیابی کارایی الگو...
در این بررسی راندمان حرارتی مبدل دو لوله ای با نانو سیال آب – Fe3O4 در اعداد رینولدز21000-2000 و کسر های حجمی بین(0.1-0.4% v/v) توسط شبکه عصبی مصنوعی ( ANN ) و همبستگی با استفاده از داده های آزمایشگاهی ارزیابی و پیش بینی شده است . سایز نانوذره اکسید آهن در حدود 20 نانومتر می باشد . عکس برداری SEM از نانو ذرات نیز برای روشن شدن پایداری و همگن بودن سوسپانسیون ارائه شده است . عدد رینولدزو کسرهای ح...
پژوهش حاضر به مقایسه مدلهای شبکه عصبی و سریزمانی در پیشبینی قیمت شاخص سهام میپردازد. بدین جهت سه مدل از شبکههای عصبی(پروسپترونی چند لایه ،پایهای شعاعی و رگرسیونی) و یک مدل از مدلهای سریزمانی (باکس- جنکینز) مورد بررسی قرار گرفته اند. شاخص کل قیمت سهام بازار بورس تهران در بازه زمانی ابتدای فروردین 1384 تا انتهای اسفند 1388 به عنوان جامعه آماری انتخاب شده است. به منظور داشتن معیاری برای ...
هدف اصلی این پژوهش ارائه مدلی برای کشف تقلب با استفاده از رویکرد ترکیبی مدل تحلیل عاملی و روش شبکه عصبی مصنوعی از نوع شبکه عصبی پیشخور با الگوریتم پس انتشار خطا است. شبکهای که برای پیشبینی تقلب مالی شرکتها استفاده میشود دارای 17 نرون (مجموعه نسبتهای مالی انتخاب شده) در لایه ورودی و 1 نرون (وضعیت تقلب شرکتها) در لایه خروجی است. تابع تبدیل مورد استفاده در لایه خروجی از نوع خطی و برای لایه...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید