نتایج جستجو برای: روش k means

تعداد نتایج: 1068359  

2010
Ninh D. Pham Quang Loc Le Tran Khanh Dang

Finding discords in time series database is an important problem in the last decade due to its variety of real-world applications, including data cleansing, fault diagnostics, and financial data analysis. The best known approach to our knowledge is HOT SAX technique based on the equiprobable distribution of SAX representations of time series. This characteristic, however, is not preserved in th...

2015
Yousuke Kaizu Sadaaki Miyamoto Yasunori Endo

Medoid clustering frequently gives better results than those of the K-means clustering in the sense that a unique object is the representative element of a cluster. Moreover the method of medoids can be applied to nonmetric cases such as weighted graphs that arise in analyzing SNS(Social Networking Service) networks. A general problem in clustering is that asymmetric measures of similarity or d...

2012
Saket Sathe Sebastian Cartier Dipanjan Chakraborty Karl Aberer

Effectively managing the data generated by Large-area Community driven Sensor Networks (LCSNs) is a new and challenging problem. One important step for managing and querying such sensor network data is to create abstractions of the data in the form of models. These models can then be stored, retrieved, and queried, as required. In our OpenSense project, we advocate an adaptive model-cover drive...

Journal: :IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 1999

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده کامپیوتر و فناوری اطلاعات 1392

در طراحی برنامه های کاربردی و الگوریتم های شبکه های حسگر بی سیم کاهش مصرف انرژی و افزایش طول عمر شبکه یک موضوع اساسی می باشد. امروزه، در شبکه های حسگر بی سیم، پروتکل های مسیریابی مبتنی بر خوشه بندی از طریق تقسیم گره های همسایه به خوشه های مجزا و انتخاب سرخوشه های محلی برای ترکیب و ارسال اطلاعات هر خوشه به ایستگاه مبنا و سعی در مصرف متوازن انرژی توسط گره های شبکه، بهترین کارایی را از لحاظ افزایش...

Journal: :IEICE Transactions 2008
Chunsheng Hua Qian Chen Haiyuan Wu Toshikazu Wada

This paper presents an RK-means clustering algorithm which is developed for reliable data grouping by introducing a new reliability evaluation to the K-means clustering algorithm. The conventional K-means clustering algorithm has two shortfalls: 1) the clustering result will become unreliable if the assumed number of the clusters is incorrect; 2) during the update of a cluster center, all the d...

ژورنال: :مجله انفورماتیک سلامت و زیست پزشکی 0
فرزاد فیروزی جهانتیغ farzad firuzi jahantigh گروه مهندسی صنایع، دانشگاه سیستان وبلوچستان حکیمه عامری hakimeh ameri m.sc. in information technology, industrial engineering dept., khaje nasir toosi university of technology, tehran, iranکارشناس ارشد فناوری اطلاعات، تجارت الکترونیک، دانشکده مهندسی صنایع، دانشگاه خواجه نصیرالدین طوسی تهران، تهران، ایران.

مقدمه: به گزارش سازمان سلامت جهانی، بیماری سل بیشترین عامل مرگ و میر در بیماری­های عفونی است. با توجه به بالا بودن درصد افراد مبتلا به سل و تعداد زیاد مرگ و میر در بین این بیماران، این تحقیق با هدف دسته بندی و پیدا کردن ارتباط بین ویژگی­های بالینی و دموگرافیک بیماران مختلف انجام شده است. روش: این پژوهش مطالعه ­ای توصیفی، تحلیلی بوده که به روی 600 بیمار مرکز تحقیقات سل بیمارستان مسیح دانشوری انج...

ژورنال: :مهندسی مالی و مدیریت اوراق بهادار 2014
ابراهیم پورزرندی مینا کیخا

دیدگاهی که در این مقاله ارائه می دهیم در دو مرحله جای می گیرد: مرحله ی اول طبقه بندی سهم ها ی پورتفوی ابتدایی با روش k-means به دسته های کوچکتر است، سپس طبقه ای که کمترین ریسک و بیشترین بازده را دارد یا به عبارتی طبقه ای که بهینه تر می باشد را به عنوان ورودی الگوریتم خود که آن را minvarmaxr نامیده ایم برمی گزینیم. الگوریتم مذبور،الگوریتم پویایی، براساس الگوریتم ژنتیک و مفهوم ارزش در معرض خطر می...

Journal: :CoRR 2016
Daniel J. Hsu Matus Telgarsky

This paper investigates the following natural greedy procedure for clustering in the bi-criterion setting: iteratively grow a set of centers, in each round adding the center from a candidate set that maximally decreases clustering cost. In the case of k-medians and k-means, the key results are as follows. • When the method considers all data points as candidate centers, then selecting O(k log(1...

Journal: :IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society 1999
Krishna Kummamuru M. Narasimha Murty

In this paper, we propose a novel hybrid genetic algorithm (GA) that finds a globally optimal partition of a given data into a specified number of clusters. GA's used earlier in clustering employ either an expensive crossover operator to generate valid child chromosomes from parent chromosomes or a costly fitness function or both. To circumvent these expensive operations, we hybridize GA with a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید