نتایج جستجو برای: خوشهبندی k means
تعداد نتایج: 702412 فیلتر نتایج به سال:
In this paper, we propose a novel hybrid genetic algorithm (GA) that finds a globally optimal partition of a given data into a specified number of clusters. GA's used earlier in clustering employ either an expensive crossover operator to generate valid child chromosomes from parent chromosomes or a costly fitness function or both. To circumvent these expensive operations, we hybridize GA with a...
We consider practical methods for adding constraints to the K-Means clustering algorithm in order to avoid local solutions with empty clusters or clusters having very few points. We often observe this phenomena when applying K-Means to datasets where the number of dimensions is n 10 and the number of desired clusters is k 20. We propose explicitly adding k constraints to the underlying clusteri...
چون در اکثر رویدادها علم پزشکی بصورت غیرقطبی و مبهم با علائم فیزیولوژیکی بیان می شوند و این نوع مطالعات عموما مبهم و نادقیق هستند. در نتیجه برای بررسی این مفاهیم براساس نظریه های تئوریهای فازی و الگوریتم های آن که مهمترین آنها خوشه بندی فازی است استفاده می شود و از ویژگیهای مهم الگوریتم خوشه بندی فازی آنست که در ساختار الگوریتم فازی در خوشه بندی از تابع عضویت فازی استفاده می شود و یک فرد ممکن ا...
To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning app...
The sets Sj are the sets of points to which μj is the closest center. In each step of the algorithm the potential function is reduced. Let’s examine that. First, if the set of centers μj are fixed, the best assignment is clearly the one which assigns each data point to its closest center. Also, assume that μ is the center of a set of points S. Then, if we move μ to 1 |S| ∑ i∈S xi then we only r...
In this paper we provide a fully distributed implementation of the k-means clustering algorithm, intended for wireless sensor networks where each agent is endowed with a possibly high-dimensional observation (e.g., position, humidity, temperature, etc.). The proposed algorithm, by means of one-hop communication, partitions the agents into measure-dependent groups that have small ingroup and lar...
We study how to learn multiple dictionaries from a dataset, and approximate any data point by the sum of the codewords each chosen from the corresponding dictionary. Although theoretically low approximation errors can be achieved by the global solution, an effective solution has not been well studied in practice. To solve the problem, we propose a simple yet effective algorithm Group K-Means. S...
The k-means clustering algorithm is one of the most widely used, effective, and best understood clustering methods. However, successful use of k-means requires a carefully chosen distance measure that reflects the properties of the clustering task. Since designing this distance measure by hand is often difficult, we provide methods for training k-means using supervised data. Given training data...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید