نتایج جستجو برای: wnt signaling

تعداد نتایج: 305941  

Journal: :The Neuroscientist 2015

Journal: :Genes & development 2008
Tamara Grigoryan Peter Wend Alexandra Klaus Walter Birchmeier

Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called be...

Journal: :Zebrafish 2011
Whitney M Lum Joshua K Robertson Terence J Van Raay

Wnt signaling is a major player during development and its misregulation often leads to disease, especially cancer. The negative feedback Wnt regulator homologs, Nkd1 and Nkd2, have been shown to inhibit Wnt signaling during development, and current evidence suggests that Nkds degrade Dvl proteins to antagonize Wnt signaling. Here, we demonstrate that during early zebrafish development Nkd1 doe...

Journal: :Journal of cell science 2016
Eliana Stanganello Steffen Scholpp

Wnt signaling regulates a broad variety of processes during embryonic development and disease. A hallmark of the Wnt signaling pathway is the formation of concentration gradients by Wnt proteins across responsive tissues, which determines cell fate in invertebrates and vertebrates. To fulfill its paracrine function, trafficking of the Wnt morphogen from an origin cell to a recipient cell must b...

Journal: :Development 2012
Demeng Chen Andrew Jarrell Canting Guo Richard Lang Radhika Atit

Dermal fibroblasts are required for structural integrity of the skin and for hair follicle development. Uniform Wnt signaling activity is present in dermal fibroblast precursors preceding hair follicle initiation, but the functional requirement of dermal Wnt signaling at early stages of skin differentiation and patterning remains largely uncharacterized. We show in mice that epidermal Wnt ligan...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2014
Miao Cui Natnaree Siriwon Enhu Li Eric H Davidson Isabelle S Peter

Wnt signaling affects cell-fate specification processes throughout embryonic development. Here we take advantage of the well-studied gene regulatory networks (GRNs) that control pregastrular sea urchin embryogenesis to reveal the gene regulatory functions of the entire Wnt-signaling system. Five wnt genes, three frizzled genes, two secreted frizzled-related protein 1 genes, and two Dickkopf gen...

2014
Christophe Faisy Stanislas Grassin-Delyle Sabine Blouquit-Laye Marion Brollo Emmanuel Naline Alain Chapelier Philippe Devillier

BACKGROUND Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP-PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induc...

Journal: :Development 2008
Chathurani S Jayasena Takahiro Ohyama Neil Segil Andrew K Groves

The inner ear derives from a patch of ectoderm defined by expression of the transcription factor Pax2. We recently showed that this Pax2(+) ectoderm gives rise not only to the otic placode but also to the surrounding cranial epidermis, and that Wnt signaling mediates this placode-epidermis fate decision. We now present evidence for reciprocal interactions between the Wnt and Notch signaling pat...

2011
Wenyan Lu Cuihong Lin Michael J. Roberts William R. Waud Gary A. Piazza Yonghe Li

The Wnt/β-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/β-catenin signaling, although the mechanism was not well defined. We f...

Journal: :Cell 2009
Christian P. Petersen Peter W. Reddien

How animals establish and pattern the primary body axis is one of the most fundamental problems in biology. Data from diverse deuterostomes (frog, fish, mouse, and amphioxus) and from planarians (protostomes) suggest that Wnt signaling through beta-catenin controls posterior identity during body plan formation in most bilaterally symmetric animals. Wnt signaling also influences primary axis pol...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید