نتایج جستجو برای: tight frames
تعداد نتایج: 98383 فیلتر نتایج به سال:
A systematic study on tight periodic wavelet frames and their approximation orders is conducted. We identify a necessary and sufficient condition, in terms of refinement masks, for applying the unitary extension principle for periodic functions to construct tight wavelet frames. Then a theory on the approximation orders of truncated tight frame series is established, which facilitates the const...
We prove the existence of equiangular tight frames having n = 2d − 1 elements drawn from either Cd or Cd−1 whenever n is either 2k − 1 for k ∈ N, or a power of a prime such that n ≡ 3 mod 4. We also find a simple explicit expression for the prime power case by establishing a connection to a 2d-element equiangular tight frame based on quadratic residues. © 2007 Elsevier Inc. All rights reserved....
Let L be a Schrödinger operator ( i ∂ ∂x −A(x))2+V (x) with periodic magnetic and electric potentials A,V , a Maxwell operator ∇× 1 ε(x)∇× in a periodic medium, or an arbitrary self-adjoint elliptic linear partial differential operator in R with coefficients periodic with respect to a lattice Γ. Let also S be a finite part of its spectrum separated by gaps from the rest of the spectrum. We cons...
We establish dilation theorems for non-tight frames with additional structure, i.e., frames generated by unitary groups of operators and projective unitary representations. This generalizes previous dilation results for Parseval frames due to Han and Larson [6] and Gabardo and Han [5]. We also extend the dilation theorem for Parseval wavelets, due to Dutkay, Han, Picioroaga, and Sun [4], by ide...
We present an interesting result regarding the implication of truncating the wavepacket of the harmonic oscillator. We show that disregarding the non-significant tails of a function which is the superposition of eigenfunctions of the harmonic oscillator has a remarkable consequence. Namely, there exit infinitely many different superpositions giving rise to the same function on the interval. Uni...
Frames for R can be thought of as redundant or linearly dependent coordinate systems, and have important applications in such areas as signal processing, data compression, and sampling theory. The word “frame” has a different meaning in the context of differential geometry and topology. A moving frame for the tangent bundle of a smooth manifold is a basis for the tangent space at each point whi...
The notion of tight (wavelet) frames could be viewed as a generalization of orthonormal wavelets. By allowing redundancy, we gain the necessary flexibility to achieve such properties as “symmetry” for compactly supported wavelets and, more importantly, to be able to extend the classical theory of spline functions with arbitrary knots to a new theory of spline-wavelets that possess such importan...
The paper presents a method of construction of tight frames for L(Ω), Ω ⊂ R. The construction is based on local orthogonal matrix extension of vectors associated with the transition matrices across consecutive resolution levels. Two explicit constructions are given, one for linear splines on triangular polygonal surfaces with arbitrary topology and the other for quadratic splines associated wit...
Tight Weyl–Heisenberg frames in `(Z) are the tool for short-time Fourier analysis in discrete time. They are closely related to paraunitary modulated filter banks and are studied here using techniques of the filter bank theory. Good resolution of short-time Fourier analysis in the joint time–frequency plane is not attainable unless some redundancy is introduced. That is the reason for consideri...
We discuss an elementary procedure that allows us to construct dual pairs of wavelet frames based on certain dual pairs of Gabor frames and vice versa. The construction preserves tightness of the involved frames. Starting with Gabor frames generated by characteristic functions the construction leads to a class of tight wavelet frames that include the Shannon (orthonormal) wavelet, and applying ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید