نتایج جستجو برای: spherical storage tanks neural networks genetic
تعداد نتایج: 1437249 فیلتر نتایج به سال:
Abstract—This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then,...
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
This paper presents our attempt to automatically define feedforward neural networks using genetic programming. Neural networks have been recognized as powerful approximation and classification tools. On the other hand, the genetic programming has been used effectively for the production of intelligent systems, such as the neural networks. In order to reduce the search space and guide the search...
Nowadays, due to increasing the complexity of IC engines, calibration task becomes more severe and the need to use surrogate models for investigating of the engine behavior arises. Accordingly, many black box modeling approaches have been used in this context among which network based models are of the most powerful approaches thanks to their flexible structures. In this paper four network base...
conclusions as we can see the ann outputs values are very close to actual cu concentration, so indicating that predicted values are accurate and the network design is proper and the input variables well suitable for the prediction of cu concentration. background access to safe drinking water is one of the basic human rights and essential for healthy life. concerns about the effects of copper on...
This paper presents a storage-efficient learning model titled Recursive Binary Neural Networks for embedded and mobile devices having a limited amount of on-chip data storage such as hundreds of kilo-Bytes. The main idea of the proposed model is to recursively recycle data storage of weights (parameters) during training. This enables a device with a given storage constraint to train and instant...
Abstract We study the storage capacity of quantum neural networks (QNNs), described by completely positive trace preserving (CPTP) maps acting on an N -dimensional Hilbert space. demonstrate that attractor QNNs can store in a non-trivial manner up to linearly independent pure states. For n qubits, reach exponential capacity, <mml:math xmlns:mml="http://www.w3.or...
in recent years, researches on reinforcement learning (rl) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. neural network reinforcement learning (nnrl) is among the most popular algorithms in the rl framework. the advantage of using neural networks enables the rl to search for optimal policies more efficiently in several real-life applicat...
The Department of Energy’s River Protection Project (RPP) is tasked with retrieving highly radioactive waste from Hanford double-shell and single-shell tanks to provide feed for vitrification for long-term storage. Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel is stored in 177 underground tanks at Hanford...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید